Important Notice
This TR is a simplified version of our paper “An Upper Boundhe tateness of Soft Real-time
Tasks Scheduled by EDF on Multiprocessors”, publishederRitoceedings of RTSS’05.
Unfortunately, in that paper there is an error in the prodf@ihma 3. This TR contains only a
subset of the sane proofs of that paper. The proofs usedsifi Bleads to a higher bound with
respect to the published paper.
However, we are working on a new TR based on a set of proofsfieat@d by the above error.
Please check at http://feanor.sssup.it/~pv or contacirusifther details.

An Upper Bound to the Lateness of EDF on Multiprocessors
Technical Report

Paolo Valente Giuseppe Lipari
Scuola Superiore S. Anna, Italy Scuola Superiore S. Anna, Italy
pv@andal f. sssup. it lipari @ssup.it
Abstract

Multiprocessors are now commonly used for efficiently acinig high computational power, even in embedded
systems. A considerable research effort is being addreésssthedulability analysis of global scheduling in Symnaetr
Multiprocessor Platforms (SMP), where there is a globalgusf ready tasks, and preemption and migration are allowed.

In many soft real-time applications (as e.g. multimedia ghecommunication) a bounded lateness is often tolerated.
Moreover, if tasks are allowed to dynamically enter anddeine system, global scheduling is a more appealing strategy
than partitioning.

Unfortunately, when considering priority-driven scheadglof periodic/sporadic tasks, previous results only &zl
on guaranteeing all deadlines, and provided worst-ca$ieation bounds that are lower than the maximum available
computational power. In particular, until now, the existerof an upper bound on the lateness of soft real-time tasks fo
a fully utilized SMP was still an open problem.

In this paper we do solve this problem by providing an uppemidiato the lateness of periodic/sporadic tasks — with
relative deadlines equal to periods/minimum inter-attivaes — scheduled by EDF on a SMP, under the only assumption
that the total utilization is no higher than the total systapacity.

1 Introduction

Multiprocessors are now commonplace in general-purpogelas in embedded systems. They provide a cost-effective
solution to achieve high computational power. Besidestdtechnological and physical constraints, increasinggezd

of single processors is becoming more and more difficult.ddenultiprocessor platforms seem to be the only option for
the most computationally demanding applications.

In the last year a large number of multi-core chips as well altiprocessor architectures have been launched in the
market. For example, to meet the requirements of demandihgdded real-time applications, ARM proposes MPCore,
a synthesizable multiprocessor core, while Motorola psegadts PowerPMC-280 SMP platform. In the high-end general
purpose processor market, both Intel, with its Pentium Dhdbrand AMD, with e.g. the Opteron dual-core processor,
envision multi-core processors as the architecture ofoghfmir high performance applications.

In this paper we consider soft real-time tasks to be exeautead Symmetric Multi Processor (SMP) platforms, com-
prised of M identical processors with constant speed. Unfortunatelytiprocessor platforms pose greater difficulties
than single processor ones when applications have timéreagents. Many negative results are known on the scheduling
of real-time applications on multiprocessors, includidd’ [1, 2, 4, 8, 3,7, 6, 12].

The results presented in this paper are related to the dasftaeal-time applications that can be modeled as a set of
periodic/sporadic tasks, i.e. sequences of jobs to exawhtre each job is associated with a relative completiodidea

equal to the period/minimum inter-arrival time. In softlréiene applications, deadlines are not critical, but itigoiortant

to respect som@uality of ServicéQoS) requirements. Examples of such QoS constraintsiariéed number of deadline
misses, limited deadline miss percentage, and so on.

In this paper we are interested in soft real-time applicetithat can tolerate a bounded lateness with respect to the
desired deadline. This kind of constraint matches a largescbf applications, like multimedia, telecommunication,
and financial ones. As an example, consider a video playeiveam drame-rate must be guaranteed, but a jitter of few
milliseconds in the frame-time does not significantly aftbe quality of the video. In contrast, audio quality is extrely
sensitive to silence gaps. However, audio samples areajypluuffered and played back at the desired rate by the audio
device. A bounded lateness in providing new samples to thizelean be easily compensated using a pre-buffering

strategy.

1.1 Related work

Research on real-time multiprocessor scheduling has basrymfiocused on guaranteeing strict deadline observarioe.

two main approaches apartitioning andglobal schedulingln partitioning the task set is divided — partitioned — ifitb
groups. Each group of tasks is assigned to one of the prasessal processors are scheduled independently. The main
advantage of such an approach is its simplicity, as a moltgssor scheduling problem is reduced\founiprocessor
ones. Furthermore, since there is no migration, this amprpeesents a low overhead.

Unfortunately, there are various negative drawbackst,Rirgling an optimal assignment of tasks to processors is a
bin-packing problem, which is NP-hard in the strong sensmdd, sub-optimal heuristics are usually adopted [13,]11, 9
Second, there are task sets that are schedulable only § tasknot partitioned [6]. Also, when tasks are allowed to
dynamically enter and leave the system, a global re-as®ghof tasks to processors may be necessary to balance the
load, otherwise the overall utilization may decrease dtaaldy.

In global scheduling, jobs are inserted in a global priedtgeredeady queugand at each time instant the available
processors are allocated to the highest priority jobs inrtlagly queue. Tasks are in general subject to migration, i.e.
during the system lifetime they may be executed on diffepeotessors.

An important classification is whether a scheduling aldwniis priority-driven [8], i.e. each job is assigned a fixed
priority, or the priority of a job can vary over time. An imgant class of global schedulers of the second type is the clas
of PFair schedulers [5, 14]. PFair schedulers break jolossmialler uniform pieces, which are then scheduled.

Unfortunately, in case of either partitioning or priorilyiven scheduling, meeting all deadlines is paid in terms of
schedulable utilization: any possible priority-driverdér partitioned scheduling algorithm has a total worstecati-
lization upper bound no larger tha@ﬁj—1 [6]. On the contrary, PFair algorithms are the only knownesttliers able to
meet all the deadlines still achieving full utilization. fdntunately they may suffer from high scheduling and miigrat

overhead.

Task E,P Job arrivals
1 12 [
2 1,2 2 2 2
3 23 3 3 .
1 2 3 4 5 ‘6’t
Proc. Speed 3 3 Dual proc.
| ‘ service
iI -
P2 1 3 3 2 3 -

Figure 1: Example of unbounded lateness with fixed prioktyesluling.

1.2 Motivation

Until now, soft real-time applications could be schedulednoultiprocessor platforms either using efficient priority
driven schedulers and obtaining zero lateness, but wasfirnig half of the available computational power; or usingiPFa
algorithms, which do achieve full utilization with zerodaiess, but may cause high overhead.

Except for PFair scheduling, to the best of the authors’ Kadge, no lateness bound is available for soft real-time
tasks that fully utilize a multiprocessor. In particulamias not even knowif lateness was actually bounded.

When considering partitioning, it is impossible to reach @ilization with bounded lateness, as shown by the fol-
lowing example. Consider 2 processors and 3 tasks, each itmetdization2/3. There is no way to assign all tasks to
the processors and achieve bounded lateness. In fact; eigheverload one of the processors, or we discard one of the
tasks, achieving a total utilization df 3.

When considering global scheduling, not all priority-@mivscheduling algorithms can achieve bounded lateness.
Consider a system with 2 processors and 3 tasks, schedulfixebypriority with priority assigned according to Rate
Monotonic. Task 1 and 2 have computation time 1 and periodsk 8 has computation time 2 and period 3. The total
utilization is5/3 < 2. Job arrivals are shown in the top part of Figure 1. Eachiagijob is depicted as a rectangle: the
projection of the left corner of each rectangle represédrgatrival time of the corresponding job, while the lengthhef
base is equal to the execution time of the job. The number oh esctangle refers to the task that issued the job. The
schedule of the first 6 instants of time is shown in the bott@m pf the figure. Notice that task 3 starts accumulating
instances, and the lateness of each instance indefinitalydres.

In the previous example, it is easy to see that EDF would havsuffered from the problem of unbounded lateness,
because jobs whose deadline is in the past have largertpriloain newly arriving jobs. Intuitively, this property o

priorities apparently guarantees a bounded lateness. \owetil now, providing an upper bound to the lateness &if so

real-time tasks for a fully utilized SMP, and under priofitsiven scheduling, was still an open problem.

1.3 Contribution

In this paper we consider a class of global priority-drivehedulers, th®PS Finish Time Schedulefsee Section 4.1 for

a definition of this class), which EDF belongs to. We prove thase schedulers guarantee bounded lateness even when
the system is fully utilized. We achieve this result by atijueomputing an upper bound to the maximum lateness in a
simple closed form.

The computed upper-bound grows linearly with. We performed a large number of simulation experiments to
see how the actual maximum lateness experienced by the ¢asisares to our worst-case bound. According to our
simulations, the grow rate of the maximum lateness expeei@by the tasks is instead sub-linear with respect the numbe
of processors. However, the bound resulted virtually tightase of2 processors: the ratio between the measured
maximum lateness and the boundig9. All the results are discussed more extensively in Section 5

The paper is organized as follows. In Section 2 we formallsoiiuce the system and the notations. In Section 3 we

present the main results, whereas in Section 4 we preseptdbés. Finally, simulation results are reported in Setbo

2 System description and notations

We consider a system consisting &f periodic or sporadic tasks to be executed on a multiprocgdatform with A
identical processors. All the processors have the sspeed(capacity R, measured in number of execution cycles per
time units. Each taskconsists of an infinite sequence ofjolqéj =1, ...to be executed. Each Jofj is characterized
by an activation (arrival) tima{, a IengthL(Jij), equal to the number of execution cycles for completing te and a

completion deadlind{. We say that ajotﬁ has an execution timd = %‘51) The following relations hold:

)
v
)

d;
whereT; is the task period (minimum inter-arrival time). The comjae (finish) time of the job]ij is denoted a#ij. We
define adatenesf a jobJ7 the quantitylat! = max [O, 17— df}

We denote, respectively, with; = max; {L(J{)} andk; = % the worst-case job length and the worst-case job
execution time for task. Finally, we defind/; = Z- < 1 as theutilization of taski. We assume thgfY , U; < M.

In [10] the concept opredictablescheduler is defined. A scheduler is predictable if, givem $&ts of jobs with the
same cardinality and such that, for each job in the first ketgetis a corresponding job in the second set with the same
arrival time and priority, and with execution time no larglean the job in the first set, then the finish time of each job in
the first set is no lower than the finish time of the correspoggbb in the second set. They also proved that any priority

driven scheduler ipredictable Hence, for simplicity, in the remainder we will assume thath jobe has a length

L(J)) =L,

We assume that a job cannot start executing before the mi®job of the same task has completed. We refer to this
constraint as thprecedence constraintVe stress the fact that a job can arrive ddeforethe previous jobs of the same
task have completed. We say that a jlfbis pendingat timet if and only if a{ <t< ff (hence a job under service is
still pending). Every task has a FIFO queue where its perjdingjare stored. We say that a taskdgiveif it has pending
jobs.

We define asotal speecandmaximum total speedf a multiprocessor at timg respectivelyMyusy(t) - R andM - R,
whereMyusy(t) < M is the number of busy processors at titn&Ve define asinder-loadandfull-load periods the time
intervals during whichMyusy(t) < M andMpysy(t) = M, respectively.

In the remainder of the paper we will refer to the above defsystiem as th#ulti Processor SysteiMPS).

As stated in the introduction, we considgobal priority-drivenscheduling. At each time instant the available proces-
sors are allocated to the highest priority jobs in the readyug. We assume that ties are arbitrarily broken. We allow
preemption and migration, i.e. jobs can be suspended amdriEgumed on the same or on a different processor, due to
the arrival of some higher priority job. In particular, welMidcus on a special class of global priority-driven schiguiy
algorithms — defined in the next subsection — that includes.ED

We call ajob fraction any portion of a job continuously executed between two coutsee start (or resume) and
suspend (or completion) events. We define as priority of drgttion the priority of the job the fraction belongs to. We
define achain of jobs of a task any sequence of job fractions belonging ¢oséime task and served back-to-back, and
headof the chain the first job fraction in the sequence.

We will assume any generic functigf{¢) of the time to be right continuous. Furthermore, for compess, we set
f(z™) =lim;_,,— f(¢), and we assume that the exponentiatiénwith exponent: = 0, is always equal t@ (even when

the baseu is infinite).

2.1 The Dedicated Processor System
In this subsection we introduce tliXedicated Processor SystgDPS), a special reference system that we will use to

define the class of global priority-driven schedulers forchtour results hold.

Definition 1 Given a MPS, we define as its referer2edicated Processor SystdiDPS) the system consisting of the
same task set and a multi-processor platform containingdicdged processor for each of thé tasks in the MPS; each

dedicated processor has a speRfi”* =U,- Ri=1,2, ..., N.

For any jobe we define as itwirtual finish timethe time instantIQ? at which it is completed in the DPS. Since
T, = 5— Vi, and since we assumed that all the jobs of the i-th task havstwease length;, we have that the DPS
completes each job exactly on its deadline and, hence, eotlan the arrival of the next job of the same task,v.gf.
F) = d < al*". ConsequentlyJ/ lat’ = f/ — F7. This is the crucial property that we will exploit to compute

upper bound to the maximum lateness.

Task E,P A Job arrivals

134

2 34 I I s

3 3,4 3 | \ 3 | \ 3 | \ 3

4 I I S e
3 4 7 8 11 12 15 16 t

Proc. Speed DPS service

DP1 3/4
DP2 3/4
3 | B |

DP3 3/4 3 3
DP4 3/4*—,
t

Proc. Speed MPS service
P1 1
P2 1
P3 1
t
|a(t31| {1,2,3,4} {1,2,3,4} 5 {1, 2,3,4}
3 —
27 @ @4
b=8 s=15 t

Figure 2: Comparing the MPS and the DPS.

An example of the service provided by a MPS and by its refexddS is shown in Figure 2.A. The task set is
comprised ofl periodic tasks, all with period and job lengtI8. Arriving jobs are depicted using the same conventions
as in Figure 1.

Jobs are scheduled by EDF in the MPS. Especially, since éiede arbitrarily broken, in this example we chose to
break ties in favor of lower index tasks to draw one of the fdsschedules. The figure clearly shows that, whereas the
DPS correctly schedules all the jobs, the MPS misses e.glehéline of jobJ} at time4. Upon.J} completion, taskt
has latenes3. The situation gets worse during the second period, and.Bo#ind.J? miss their deadline at timg

Hereafter we will consider the following two systems: a gan®1PS and its reference DPS. We will refer to these

systems athe MPS andthe DPS, respectively. We can now define the class of schedukergilfocus on.
Definition 2 We say that a priority-driven scheduler for the MPS is a DP&dH Time (DPS-FT) scheduler, if, denoted
with P/ the priority of the generic job’/, we have that

P/ =Pl < F/ = F})

vJI, gt , ,
ek {Pj>P,i<:>F§<F,i

and, at each time instant, the available processors arecalied to the highest priority jobs. Ties are arbitrarily fxen.

In other words, in a DPS-FT scheduler the ordering among ijmivipies is the opposite of the ordering between job finish

times in the DPS. SinceJ? F/ = d!, EDF is a DPS-FT scheduler. Hereafter, we will assume the®8-BT scheduler

is used to schedule jobs in the MPS.

N Number of tasks in the task set

R Speed of any of the processors

M Number of processors in the system

W5(t) Total amount of service delivered by the syst&rduring [0, t]
W2 (t) Amount of service received by thieh task durind0, ¢] in a systemS
L(J) Length (number of execution cycles) of job J

J! The j-th job of the i-th task

al,s!, f] | Arrival time, start time, finish time of/

F! Virtual finish time of J7, i.e. finish time ofJ/ in the DPS

L; (Worst-case) length of i-th task

E; (Worst-case) execution time éfth task

Lax Maximum job length over all the tasks

Ernag Maximum execution time over all the tasks

lag; (t) Lag of taski (W.PT5(t) — WMPS(¢)).

Table 1: Notations used in this paper.

Under the assumptions of constant speed processors ansksfwéth constant job length, any DPS-FT scheduler
is equivalent to EDF (i.e. it generates the same schedulésjvever, all the following lemmas and theorems will be
actually proved in the more general case where all the psocehave the same time-varying spé&d), and where each
dedicated processor has time-varying spBed™® (t) = U; - R(t). In this case, the class of DPS-FT schedulers can also
include schedulers different from EDF. While this genemation does not complicate the proofs, it paves the way for
future more general results.

We define asV ¥ (t) andW,PPS (t) the amount of service provided by, respectively, the MPStaadPS to thé-
th task durind0, ¢]. We define the total amount of service provided by the MPS hadPS durind0,] as, respectively,
WMPS (1) = S WMPS(t) andWPPS (1) = Y, WPPS(t). We define adag of the i-th task at time the following
quantity:

lag;(t) = WS (t) - WMPS (1)

For brevity, given two time instantg > ¢, we defineWV S (¢, t5) = WMPS (ty) — WMPS(¢). We use the same
short notation folV P75, WMPS 17 DPS gndlag;.

In the proofs we will often use the following property: sinB& S < R Vi, the lag of a task can not increase during
the service of one of its job chains. For example, in FigufetBe lag of taskl increases durin{f, 3], and it is equal to
2 attime3. Conversely, it decreases durifyg 6], and it is e.g. equal td at time4.

Since the lag of a task may be a useful figure of merit, in thisepave report an upper bound to the maximum per-task

lag in addition to the one on the maximum lateness. The motafntroduced until now are summarized in Table 2.1.

3 Maximum lag and maximum lateness

In this section we enunciate and briefly discuss the follgwireorems, which constitute the main results of this paper.

Theorem 1 If an MPS comprised aof/ identical processors is scheduled using a DPS-FT schedhkefollowing guar-
antees on the lag experienced by any task hold:
U;

) lag. < (1— — 'Li i
Vi, t lag;(t) < (M) i + U,

M-1) L.)

; j M-1 (M —1)?
\V/Jj 1 . J < Ui . ° Li : LmaT .
7 lag(f)) < U i 7

®3)

Theorem 2 If an MPS comprised a¥/ identical constant speed processors is scheduled using&PPscheduler, the

following guarantees on the job lateness hold:

—1 (M —1)?
By L
+ M

VJf lati S : Emaw . (4)

The formal proofs of the theorems are reported in the nexisecWe can note that processors are not required to
have constant speed for Theorem 1 to hold (but they must In¢igaé i.e. they must all have the same speed at any time

instant). With regard to Theorem 2, we highlight that, widén= 1, Eq. (4) collapses to the EDF guaranveﬁ lat{ =0.

4 Proofs

In this section we will formally prove Theorems 1 and 2.

4.1 Proof notations and rationale
In this subsection we introduce the notations used in thefpréhe main idea behind them, and the proof strategy. The
proofs are essentially based on computing a boungktdt), from which the bound on the lateness will be then derived.

The following Lemma restricts the time instants to be comied when computing an upper bound to the lag.

Lemma 1 The maximum lag experienced by a task is no higher than thenmaxlag that the task can experience at the

start time of some of its job fractions.

Proof. When a task is inactive, its lag is necessarily no higher tha@onsider instead a generic maximal active period
[t1, to] Of taski. Let X* be thek-th job fraction of task served by the MPS. Any time instaht [t;, t»] necessarily
falls into a sub-intervalf*~!, f¥] C [ti, 5] ranging from the finish timg*~! of a job fractionX*~!, and the finish
time of the next job fractiodk* served by the MPS (iK ¥ is the first job fraction of task executed duringgy, ts], then

we assumgff"1 = t1). Since the lag can not increase during the service of a jelhave that

max lag(t) = 1agi(sf)
te[fF=1, fF]

wheres! is the start time of the fractiox *. O
Consequently, in the next subsection we will focus on cornguhe maximum lag of the task at the start timef a

generic job fractionX belonging to ajob]ij.

First, if s = a{, thenlag, (s) = 0 because both the MPS and DPS have finished all the pendingfebs

Let us then consider the case> ag' (note that, in generak might be even larger thaﬁij, i.e. larger than the job
deadline in case of EDF).

To handle this case, we define@g) the set of the tasks owning pending jobs with priority no loth@n X at timet.
For example, in case of EDE(t) includes all the tasks owning jobs with deadline no highantF‘;’ (i.e. than the jobX
belongs to) at time. Note thatvt € [a/, s) i € a(t), becausd! is pending durinda’, s) and, by definition, its priority
is equal to the priority of its fractioX . Figure 2.B shows the values assumedif) and|a(t)| during[0, s), assuming
the fractionX to coincide with the whole job’{, which in turn starts service at time= 15 in Figure 2.A.

There are only two possible causes fotto start at times > a{:

1. X is blocked by priority that is at least\/ tasks own pending jobs with priority no lower thalrj at time s~

(la(s™)| = M).
2. X is blocked by the precedence constraint at time

In the second caseX belongs to a chain. Since the lag of a task does not increaie wehjobs are being served,
the maximum lag of the task is trivially upper bounded by itsximum lag at the start time of the chain head. This is
in its turn equal td), unless the chain head is blocked by priority. As a conchudioe problem that remains to solve is
computing the maximum lag of the task at the start time of etiibpa blocked by priority. To this aim, we will use the

following two definitions.

Definition 3 Given a job fractionX blocked by priority, we define dast priority blocking periodor X the time interval
[b, s), whereb is the smallest time instarit such thatvt € [b,s) |a(t)] > M, i.e. such that at leasd/ tasks are

continuously active and have pending jobs with priority owér thanX during [b, s).

Figure 2.B shows the last priority blocking period of the jifh We note thab might in general preced@’f. Further-
more, we will exploit the following two properties of the tgwiority blocking period:|a(b™)| < M, and the MPS is in

full load during(b, s).
Definition 4 We defind" as the set of the jobs that receive service in the MPS dybing).

Notice that, by definition of last priority blocking perioithe jobs inl* have priority no lower thatX'. As an example,
assuming agaiX = J3 in Fig. 2, during[b, s) the MPS serves the jolis= {J3, J, J3, J3, J3, J3, Ji, J5, Jit.

The MPS starts serving only after serving part of the jobs in. However, the jobs i have priority no lower than
Jj which means that they finish no later th@ﬁin the DPS. Hence, the DPS must complaliethe jobs inI" before it
can complete]ij. Furthermore, since the MPS works at maximum total speeitgl(ir, s], it consumeshe jobs inI" at

a pace no lower than the one at which the DPS could consumedhbéng the same time interval. For these reasons,

10

intuitively, the maximum value dbg;(s) depends omow aheads the DPS with respect to the MPS in the service of the
jobs inT" at timeb. More formally, we will show that the maximum value lak; (s) depends on the following quantity:
> jeavos lag;(b), wherea??® C «a(b) is the subset of the tasks with positive lag at titn&Ve calltotal lag related to the
fraction X the above quantity.

We can now define the proof strategy: we will first express tlagimum lag of a task as a function of the total lag
in Subsection 4.2. This general formula will serve two pwgs We will first use it in Subsection 4.3 to compute an
upper bound to the total lag itself. Then, in the last sulisectve will substitute the just computed bound in the gehera
formula, thus getting an upper bound to the lag experiengeaitask. Finally, the latter bound will be used to compute

an upper bound to the lateness experienced by a job.

4.2 Basiclemmas
This subsection contains three lemmas, which allow us teigecan upper bound to the lag of a task as a function of the
total lag.

As shown in the last of the three lemmas,;fag is maximumifFY < s. In such a case, itis easy to understand that the
value of lag(s) grows with on the amount of servié&””S (F/, s) provided by the DPS to thieth task during[F?/, s].
The nextlemma provides an upper boundity’”* (F/ , s), as a function of the differend& 7S (b, s)—WPPS (b, F7).
This intermediate result is used in the successive lemmadafi upper bound tWDPS(F s) as a function of the total

lag.

Lemma 2 Let X be a generic job fraction, belonging to a Jolj that starts service at time in the MPS after being

blocked by priority. We have:

WPPS(s) ~ WPPS(F]) <
% . [WMPS(b, 8) _ WDPS(b, FZJ)} (5)

whereb is the beginning of the last priority blocking period &f.

Proof. We defineRP"9(t) as the total speed of the DPS at timed”"“(¢) as the set of the tasks active in the DPS at
timet, B; = {b < t < min(s, F)|i € APPS(t)} andB; = [b, min(s, F?)]\B; (respectively, the busy and idle periods
of thei-th task duringb, min(s, F)]). First, we work on the differendd??S (s) — W°PS (min(s, F/)). We can make

the following algebraic manipulations:

WiDPS(S) —WiDPS(mln(s Fj)) _
(WPPS(s) = WPPS (b)) — (WPPS(F]) — WPPS (b)) =
WPPS (b, s) — WPPS (b, min(s, Fj)) =
DPS U, DPS U; DPS DPS
WPES(b, s —|—fB 7ZJEADPS(T> o R (1) dT—fB 7ZJ€ADPS(T)U R (1) - dr — WPP5(b, min(s, Fj))
(6)
To get the thesis we will first find an upper bounditg” S (b, s) + [#W - RPPS(7) . dr and then a

lower bound tof; s——"——- - RP"S(7) - dr + W5 (b, min(s, F7)). Sinceb, s] falls inside a full-load period

jeADPS () Yi

11

(at leastM tasks are active in the MPS durifig s)), thenvt € [b, s] the total speed of the MPS BMP3(t) = M - R(t).

In contrast, we have
> jeanrsy Uj

i . R]WPS (t)

vt RPPS(t)= > U;-R(t) =

jEADPS(t)

Furthermore, defineg;(¢) as the fractionR”?“(t) that the DPS dedicates to the- th task at timet, we havevt ¢

_ U;
Bi Xz(t) = m Hence:
WDPS b s +fB Z7€ADIQ§(T> RDPS(T) <
U; DPS DPS
fBi ZjeADiPS(T) U; . R (d7-+ fmm s FlJ) ZJEADPS(T) U; R (7-) dT"’
U, DPS
+fé ZyeADPS(T) J R () -
[y RDPS(>-dr - @)

: U; 2 jeaDPS (s MPS _
fb ZjEADPS(T> U; ’ <= M () R () -
%'&SRJWPS(T)-dT =

U wMPs(p,)

We find now a lower bound t§; v;(7) - RP7S(r) - dr + WPTS (b, F/). Considering thalp, min(s, £7)] C [b, s,

andthawt 3 . yors) U; < M, we have

fB m RDPS()'dT+WDPS(b, mm(s Fj)) =
U, U;
fB—i 2 jeapPSs(Uj (RPPE(r) - dr + fB Z;eADPSu) Uj CRPPS(r) - dr >
111111(F7 s) U; DPS

Jy S RS0 = ®)

fbmln(Fi ,8) %} RDPS (7_) dr —

% - WDPPS(p, mln(Flj, s))
Substituting (8), (7) and ((11)) in (6), we get

WPPS(s) = WPPS (min(s, F))) < ©

% . [WMPS(b, 5) — WPPS(p, min(Fij7 s))}

If Ff < sthe thesis holds. I < Ff consider that thejoldij is already arrived at time, but it is finished only at time

F? in the DPS. This implies that theth is continuously served in the DPS durifig F7]. Hence

WPPS(s, F}) >

Yo \wPPs (s, Fl)| =
\WPPS(b, F/) — WPFS(b, 5))
|\ WPPS(b, F)) — WMPS (b, 5))

(10)

SSRSIS
IV

As an intermediate step for computing an upper bound tg dagthe next lemma provides an upper bound to the
differenceW,°F5(s) — WPPS(F/). The bound is achieved in two steps. First it is computed greupound to the
difference between the total amount of senigé! S (b, s) that the MPS provides during, s] and the total amount of

servicelV 7% (b, F/) that the DPS must provide durifilg F/] to finish.J7. Then the previous lemma is applied.

12

Lemma 3 Let X be a generic job fraction, belonging to a Jolj that starts service at time in the MPS after being

blocked by priority. We have: 4
WPPS(s) = WPP(F]) <

G [Shcar lag) = ()]

whereLTes(Jf) is the difference between the Iength]c;@fand the portion of]f already served by the MPS at timagb is

(11)

the beginning of the last priority blocking period &, anda?°s = {i € a(b) | lag,;(b) > 0}.

Proof. Le A be the set of the tasks that receives some service in the MR®db s), we have

WMPS(b, S) —_

Sen WHMES (b, s) (12)

The amount of servic . , WMES (b, s) is equal to the sum of the portion of the jobslinserved by the MPS
during [b, s). All the jobs inT" have priority no lower tharX. Hence the DPS must have finished both these jobs and
Jf before finishing]f at timeFij. Furthermore, by definition of last priority blocking pedionot all the jobs il* have
arrived at timeb. This implies thatFZ.j > b. Under this hypothesis, durirg, Fj) the DPS must provide the tasksAn
with the same total amount of servidg,_, WMF5 (b, s) they receive in the MPS durirg, s}, minus the extra service,
with respect to the MPS, it already provided to the jobg'in Jf at timeb. The latter quantity is upper bounded by

> icaus lag (b). In the end, we have:

WDPs (b, FJJ)
Xiea WS (b, 5) + L7 (J]) = Sy i 1agi(b)
Diea WMPE (b, 5) + L7 (J]) = Xjeave- 12, (0)
Subtracting the last inequality from (12), we get:

WMPS (b, 5) = WPPS(b, F]) <
i WHTS (b, 5) = (Spen WHTS (b, 5) + L7 () = T 12G,0))
Zleaws lagl(b) - LreS(Jz'J)

(13)

Substituting the previous inequality in (5), we get the thes

O

Using the bound computed in the previous lemma, we can nowepttte following lemma, which expresses the
maximum lag of a task as a function of the total lag. This lenwilbconstitute the basic building block for computing

an upper bound to both the total lag and the lag of any task.

Lemma 4 Let X be a generic job fraction, belonging to a Jolj that starts service at time in the MPS after being

blocked by priority. We have:

lag;(s) < L™%(JJ

> lag;(b) L"eS(Jg')] (14)

j€ares

whereL”es(Jij) is the difference between the Iength]c;’ifand the portion of]{ already served by the MPS at timagb is

the beginning of the last priority blocking period &f, anda?®® = {i € «(b) | lag,(b) > 0}.

13

Proof. The proof strategy is as follows: we will first exprdsgi(ﬂj) in a convenient form, then we will find an upper

bound tolag; (FY, s), finally we will sum this bound téag;(F’). We have that:
WDPS(F) WJWPS()+ LreS(Jij) (15)

We can do some algebraic manipulations:
WiMPS (S)
WMPS(F7) + [WMPS (s) ~ WMPS(F))] - = (16)
WMPS(F)) + A

whereA = WMPS (s) — WMPS(F/). Substituting successively (15) and (16) into the definitiblag; (FY), we get

WDPS (Fj) _ WiMPSE
WiMPS()+LTP9(JZJ) WiA]PS(
Lres(Jij) [WiMPS(S) WMPS (FJ)
Lres(J7) + A

<
~— — —
|

(17)

Furthermore: ‘
lag;(F7, s) =

[WDPS(S) _ WiMPS(S)] _ [mDPS(EJ) WMPS(ZFf)
(WPPS(s) = WPPS (B])| — [WPS (s) = WHPS(FY)
WPPS(s) — WPPS(FJ }

(18)
A
where the last identity follows from (16). Thanks Lemma 3,vese

WPPS(F!, s) <
L[S canee lag; (0) — L7 (77)]

Substituting the last inequality in (18), we get

(19)

lag,(F/, s)
(WiDPS(S) - WiDPS(Fij)) -A
A

G [e oy (6) — L7550

Finally, summing this inequality to (17), we get the thesis.

IA I

(20)

O
4.3 Bounding the total lag

We need a last intermediate lemma.

Lemma5 Let A(f) be any subset, comprised of no more tidn- 1 tasks, of the set of the tasks under service at time

We have that

> lag;(f) < (M —=1)* Lipas (21)

JEA(D)

Proof. We will proceed by induction.
The time interval0,] can be divided into a finite sequence of sub-intervals, shahduring each sub-interval, the

set of the tasks under service does not change. In the rektsoprtoof, we will call just asub-intervaleach of the

14

above defined sub-intervals. Consequently, during eaclindebval the sum of the lags of the tasks under service danno
increase. Hence the sum of the lag of any subset of the taslkes sarvice during any sub-interval is upper bounded by
the sum of the lags of the same tasks at the beginning of thénsedval. Lett’ be the beginning of the sub-interval

belongs to, we have that(t¥) = A(#') and that

D lagi()) < > lag;(?) (22)

JEA(D) JEA(D)

Hence, in the rest of this proof, we prove that the thesis$atdhe beginning of the sub-interval belongs to. For
the base case, the thesis trivially hold¢’it= 0. As inductive hypothesis, suppose that the thesis holdarfgrsubset,
comprised of no more thall — 1 tasks, of the tasks under service at the beginning of anyedsdub-intervals preceding
the onet belongs to.

We can assume, without losing generality, thatthe: M tasks inA(t') are the taskg, 2, ..., V, and that they are
ordered by the start time; of the chain headX’;. Let J(X;) be the job the fractiok; belongs to. Leb; be the last
priority blocking period of the fractioX;, let a;(¢) be the set of the tasks that have pending jobs with prioritioner

thanX; attimet, and lete”*” = {i € «;(b;) |lag;(b;) > 0}. From Lemma 4 we can write
> e lag; ()

EJGA Iagj(5)
S e (LT IX0) + 5+ [Zear lag; (b)) - L”S(J(Xj))”

ININ

(23)

because the lag of a task can not increase during the exeaitime of its chains, and the taglke [1, V] is continuously

served durings;, t]. From the inductive hypothesis and the fact thae A(¢) \a?"s(bj)\ < M -1, we have

) 12,
jgl,?(}tg) [Z Iag:(bj)] < (M —1)*- Lz

i€al®’
Hence B
ZJEA()‘) IagJ) <
res Uj rpe
ZjEA(ﬂ {L ('](X)) + e [(M - 1)2 “Lmaz — L]
M- U res Uj
e {2 Lo (X)) + G- (M - 1)2 Lo
M-U; U B
ZJGA({) {T *Lmae + ™M (M — 1)2 * Linag =
Ui . U
LmarZ]EA(f){l_W—i_ﬁ(M2_2M+1)
U; U,

U; U,

Linas Seacn {1~ 5+ U - M—2-Uj+ 5
Lmam'zjeA({){1+Uj'M—Q'Ug‘}
Lmam : ZjEA(ﬂ {1 + Uj (M - 2)}
y p— Z]EA(t) {1+ (M 2)}
Linaz ZgEA(ﬂ()
() Lias
(M)2 Linax

IN

(24)

Al

IA

O

We can now compute an upper bound to the total lag.

15

Theorem 3 Let X be a generic job fraction, belonging to ajol,;f, which starts service in the MPS after being blocked

by priority, that starts service at timein the MPS after being blocked by priority. We have

> lag,(b) < (M = 1)*- Linga (25)

qEQPos

whereb is the beginning of the last priority blocking period &f, anda??® = {i € «(b) | lag;(b) > 0}.
Proof. The thesis trivially follows from the previous lemma.

4.4 Maximum lag and maximum lateness

We can now prove Theorems 1 and 2.

Proof of Theorem 1 Thanks to Lemma 1, to prove (2), all we need is to compute aerppund to the lag experienced
by taski at the start time of any job fractionX belonging to ajob]ij . Apart from the trivial case when the jokj starts

service as it arrives, and is served until completion, wédistinguish between two cases:

1. X has been blocked by priority. Thanks to Lemma 4, we have

lag,(s) <
L7 (77) + % - [eares 1ag;(6) = L75(J7)]

whereb is the beginning of the last priority blocking period far. Substituting (25) (Theorem 3) into the last

expression, we get

lag;(s) <
L () + % - [(M =1 Lo = 177
; 7_1)\2 res 7J (26)
Lres(JiJ) T U'7 . [(]Wjul) . L’mar L Jé]):| —

(1 — A_}) . Lres(Jij) +U;- % N -
which proves (2).

To prove (3), assume thaf is the last fraction off/. We havelVM PS5 (s, f7) = L7**(J7), while during the same
time interval WPPS (s, f1) < U; - L™s(J7) (recall thatvt RPFS(t) = U, - R(t)). As a consequence:

lag(f]) —lag,(s) =

WPPS(s, f1) = WMPS(s, f) <

(U = 1) L7 (J))
As a conclusion, considering also (26):

lag, (/)
| lag,(s) + lag,(1/) —lag,(s)
(L= 5) Do) o+ (Us = 1) L7 () 4 Us - G L
(1—L)u;-Lres(y+ v, - M0

IA

which proves (3).

2. X has been blocked by precedence. Ket"s! be the head of the chai belongs to. Considering thaf /st
necessarily falls into the previous case, that (ap < lag;(ssirst), and Inequality (26), Inequality (2) follows.

Using the same arguments as in the previous case, (3) caowenms wellO

We can finally prove our upper bound on the maximum lateness.

16

Proof of Theorem 2 Recall that lat = f/ — F/. If f/ < F/, the thesis trivially holds. Consider the cage> F/.
The schedules of (the fractions off in the MPS and in the DPS, and hence the differeffce- £/, do not depend on
whether task issues new jobs aftejf. Suppose that indeed an indefinite number of jobs has besediss task at time

a{. We will prove the thesis by contradiction. Suppose that:

fl-F >
1 [M-1 (M 1)2 _
1 M- (M 1)2
U;-R’ Ui - M “Li+ " Linaz

In such a case we have that:

o M—1 M —1)
WiDPS(FiJ7 >Uu:- i L maz + % “ Linaa

Furthermore, since’° 7S (F7) = WMFPS(f7) we have

lag,(f/) =
WPPS(f]) = WMPS(f]) - =
WDPS(fJ) WDPS (FJ)
WDPS(FJ) >
_ M-1)
Ui' %Lz"_(— maw:|
which contradicts Inequality (31
5 Simulations
We are simulating EDF global scheduling over 9 SMP platforoasnprised of2, 3, ..., 10 unit-speed processors, re-

spectively. For each SMP, we considexealy heavy task sets, i.e. task sets made of tasks with utilizétigher thar0.8
each.

For each SMP50 task sets were randomly generated. Finally, for each taskheecorresponding EDF schedule was
simulated for2 - 10 - 10° ticks, 10° ticks being the maximum task period.

According to the simulations, the bound is tight only forwheavy tasks on 2 processors, while it is too conservative
in the other cases. Especially, the distance between thedband the observed lateness grows with the number of

processors.

6 Conclusions

In this paper we propose an upper bound to the lateness atsbftime tasks scheduled by EDF on a SMP. First we show
that not all scheduling algorithms are able to provide a ldedrateness in the case of full utilization. Then, we prepos
a bound and prove its correctness. The proposed bound isnmpdesclosed form, and it has been shown to be virtually
tight for heavy task sets on 2 processors. According to thelsitions, the bound is not tight for more than 2 processors.

Especially, the distance between the bound and the obsktezess grows with the number of processors.

17

References

(1]
(2]
(3]
[4]
5]
(6]

[7]
(8]
9]
[10]
[11]
[12]

[13]
[14]

J. Anderson and A. Srinivasan. Mixed pfair/erfair schi@th of asynchronous periodic task¥ournal of Computer and System
Sciences68(1):157-204, 2004.

B. Andersson.Static-priority scheduling on multiprocessorBhD thesis, Department of Computer Engineering, Chalnmér U
versity of Technology, Goteborg, Sweden, 2003.

B. Andersson, S. Baruah, and J. Jonsson. Static-prisctteduling on multiprocessors. In IEEE, edifdrpceedings of the IEEE
Real-Time Systems Symposiiac 2001.

T. Baker. Multiprocessor EDF and deadline monotonicestthability analysis. IfProceedings of the 24th IEEE International
Real-Time Systems Symposium, RTSZ0G3.

S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Propogte progress: A notion of fairness in resource alloca#idgorithmica

6, 1996.

J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Asalerand S. Baruatdandbook of Scheduling: Algorithms, Models, and
Performance Analysjshapter A Categorization of Real-time Multiprocessor&ttling Problems and Algorithms. Chapman
Hall/ CRC Press, 2004.

S. Funk, J. Goossens, and S. Baruah. On-line schedutingniform multiprocessors. In IEEE, editdétroceedings of the IEEE
Real-Time Systems Symposipages 183-192, Dec 2001.

J. Goossens, S. Funk, and S. Baruah. Priority-driveeduling of periodic task systems on multiprocessB®wsal-Time Systems
25(2-3):187-205, Sep-Oct 2003.

R. Graham.Computer and Job Scheduling Theochapter Bounds on the performance of scheduling algosithiley, New
York, 1976.

R. Haand J. W. S. Liu. Validating timing constraints inltiprocessor and distributed real-time systemsl4th IEEE Interna-
tional Conference on Distributed Computing Systelnos Alamitos, 1994.

A. Khemka and R. K. Shyamasunda. Multiprocessor sclimglof periodic tasks in a hard real-time environment. Tecél
report, Tata Institute of Fundamental Research, 1990.

A. Mok and M. Dertouzos. Multiprocessor scheduling ihard real-time environment. IRroceedings of the Seventh Texas
Conference on Computing Systert@78.

Y. Oh and S. H. Son. Allocating fixed-priority periodigsks on multiprocessor systendsurnal on Real Time Systen® 1995.

A. Srinivasan and J. Anderson. Efficient schedulingaff seal-time applications on multiprocessors. Hroceedings of the at
the 15th Euromicro Conference on Real-time Syst@ages 51-59, July 2003.

18

