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Abstract

Multiprocessors are now commonly used for efficiently acinig high computational power, even in embedded
systems. A considerable research effort is being addreésssthedulability analysis of global scheduling in Symnaetr
Multiprocessor Platforms (SMP), where there is a globalgusf ready tasks, and preemption and migration are allowed.

In many soft real-time applications (as e.g. multimedia ghecommunication) a bounded lateness is often tolerated.
Moreover, if tasks are allowed to dynamically enter anddeine system, global scheduling is a more appealing strategy
than partitioning.

Unfortunately, when considering priority-driven scheadglof periodic/sporadic tasks, previous results only &zl
on guaranteeing all deadlines, and provided worst-ca$ieation bounds that are lower than the maximum available
computational power. In particular, until now, the existerof an upper bound on the lateness of soft real-time tasks fo
a fully utilized SMP was still an open problem.

In this paper we do solve this problem by providing an uppemidiato the lateness of periodic/sporadic tasks — with
relative deadlines equal to periods/minimum inter-attivaes — scheduled by EDF on a SMP, under the only assumption
that the total utilization is no higher than the total systapacity.

1 Introduction

Multiprocessors are now commonplace in general-purpogelas in embedded systems. They provide a cost-effective
solution to achieve high computational power. Besidestdtechnological and physical constraints, increasinggezd

of single processors is becoming more and more difficult.ddenultiprocessor platforms seem to be the only option for
the most computationally demanding applications.

In the last year a large number of multi-core chips as well altiprocessor architectures have been launched in the
market. For example, to meet the requirements of demandihgdded real-time applications, ARM proposes MPCore,
a synthesizable multiprocessor core, while Motorola psegadts PowerPMC-280 SMP platform. In the high-end general
purpose processor market, both Intel, with its Pentium Dhdbrand AMD, with e.g. the Opteron dual-core processor,
envision multi-core processors as the architecture ofoghfmir high performance applications.

In this paper we consider soft real-time tasks to be exeautead Symmetric Multi Processor (SMP) platforms, com-
prised of M identical processors with constant speed. Unfortunatelytiprocessor platforms pose greater difficulties
than single processor ones when applications have timéreagents. Many negative results are known on the scheduling
of real-time applications on multiprocessors, includidd’ [1, 2, 4, 8, 3,7, 6, 12].

The results presented in this paper are related to the dasftaeal-time applications that can be modeled as a set of
periodic/sporadic tasks, i.e. sequences of jobs to exawhtre each job is associated with a relative completiodidea

equal to the period/minimum inter-arrival time. In softlréiene applications, deadlines are not critical, but itigoiortant



to respect som@uality of ServicéQoS) requirements. Examples of such QoS constraintsiariéed number of deadline
misses, limited deadline miss percentage, and so on.

In this paper we are interested in soft real-time applicetithat can tolerate a bounded lateness with respect to the
desired deadline. This kind of constraint matches a largescbf applications, like multimedia, telecommunication,
and financial ones. As an example, consider a video playeiveam drame-rate must be guaranteed, but a jitter of few
milliseconds in the frame-time does not significantly aftbe quality of the video. In contrast, audio quality is extrely
sensitive to silence gaps. However, audio samples areajypluuffered and played back at the desired rate by the audio
device. A bounded lateness in providing new samples to thizelean be easily compensated using a pre-buffering

strategy.

1.1 Related work

Research on real-time multiprocessor scheduling has basrymfiocused on guaranteeing strict deadline observarioe.

two main approaches apartitioning andglobal schedulingln partitioning the task set is divided — partitioned — ifitb
groups. Each group of tasks is assigned to one of the prasessal processors are scheduled independently. The main
advantage of such an approach is its simplicity, as a moltgssor scheduling problem is reduced\founiprocessor
ones. Furthermore, since there is no migration, this amprpeesents a low overhead.

Unfortunately, there are various negative drawbackst,Rirgling an optimal assignment of tasks to processors is a
bin-packing problem, which is NP-hard in the strong sensmdd, sub-optimal heuristics are usually adopted [13,]11, 9
Second, there are task sets that are schedulable only § tasknot partitioned [6]. Also, when tasks are allowed to
dynamically enter and leave the system, a global re-as®ghof tasks to processors may be necessary to balance the
load, otherwise the overall utilization may decrease dtaaldy.

In global scheduling, jobs are inserted in a global priedtgeredeady queugand at each time instant the available
processors are allocated to the highest priority jobs inrtlagly queue. Tasks are in general subject to migration, i.e.
during the system lifetime they may be executed on diffepeotessors.

An important classification is whether a scheduling aldwniis priority-driven [8], i.e. each job is assigned a fixed
priority, or the priority of a job can vary over time. An imgant class of global schedulers of the second type is the clas
of PFair schedulers [5, 14]. PFair schedulers break jolossmialler uniform pieces, which are then scheduled.

Unfortunately, in case of either partitioning or priorilyiven scheduling, meeting all deadlines is paid in terms of
schedulable utilization: any possible priority-driverdér partitioned scheduling algorithm has a total worstecati-
lization upper bound no larger tha@ﬁj—1 [6]. On the contrary, PFair algorithms are the only knownesttliers able to
meet all the deadlines still achieving full utilization. fdntunately they may suffer from high scheduling and miigrat

overhead.



Task E,P Job arrivals
1 12 [
2 1,2 2 2 2
3 23 3 3 .
1 2 3 4 5 ‘6’t
Proc. Speed 3 3 Dual proc.
| ‘ service
iI -
P2 1 3 3 2 3 -

Figure 1: Example of unbounded lateness with fixed prioktyesluling.

1.2 Motivation

Until now, soft real-time applications could be schedulednoultiprocessor platforms either using efficient priority
driven schedulers and obtaining zero lateness, but wasfirnig half of the available computational power; or usingiPFa
algorithms, which do achieve full utilization with zerodaiess, but may cause high overhead.

Except for PFair scheduling, to the best of the authors’ Kadge, no lateness bound is available for soft real-time
tasks that fully utilize a multiprocessor. In particulamias not even knowif lateness was actually bounded.

When considering partitioning, it is impossible to reach @ilization with bounded lateness, as shown by the fol-
lowing example. Consider 2 processors and 3 tasks, each itmetdization2/3. There is no way to assign all tasks to
the processors and achieve bounded lateness. In fact; eigheverload one of the processors, or we discard one of the
tasks, achieving a total utilization df 3.

When considering global scheduling, not all priority-@mivscheduling algorithms can achieve bounded lateness.
Consider a system with 2 processors and 3 tasks, schedulfixebypriority with priority assigned according to Rate
Monotonic. Task 1 and 2 have computation time 1 and periodsk 8 has computation time 2 and period 3. The total
utilization is5/3 < 2. Job arrivals are shown in the top part of Figure 1. Eachiagijob is depicted as a rectangle: the
projection of the left corner of each rectangle represédrgatrival time of the corresponding job, while the lengthhef
base is equal to the execution time of the job. The number oh esctangle refers to the task that issued the job. The
schedule of the first 6 instants of time is shown in the bott@m pf the figure. Notice that task 3 starts accumulating
instances, and the lateness of each instance indefinitalydres.

In the previous example, it is easy to see that EDF would havsuffered from the problem of unbounded lateness,
because jobs whose deadline is in the past have largertpriloain newly arriving jobs. Intuitively, this property o

priorities apparently guarantees a bounded lateness. \owetil now, providing an upper bound to the lateness &if so



real-time tasks for a fully utilized SMP, and under priofitsiven scheduling, was still an open problem.

1.3 Contribution

In this paper we consider a class of global priority-drivehedulers, th®PS Finish Time Schedulefsee Section 4.1 for

a definition of this class), which EDF belongs to. We prove thase schedulers guarantee bounded lateness even when
the system is fully utilized. We achieve this result by atijueomputing an upper bound to the maximum lateness in a
simple closed form.

Is this bound tight? We performed a large number of simutegigperiments to see how the actual maximum lateness
experienced by the tasks compares to our worst-case bohedadund resulted virtually tight in caseDprocessors: the
ratio between the measured maximum lateness and the bo0rtisThis ratio decreases as the number of processors
increases, until it stabilizes at approximat&lp for a number of processors higher theth All the results are discussed
more extensively in Section 5.

The paper is organized as follows. In Section 2 we formallsoiiuce the system and the notations. In Section 3 we

present the main results, whereas in Section 4 we preseptdbés. Finally, simulation results are reported in Setbo

2 System description and notations

We consider a system consisting &f periodic or sporadic tasks to be executed on a multiprocgdatform with A
identical processors. All the processors have the sspeed(capacity R, measured in number of execution cycles per
time units. Each taskconsists of an infinite sequence ofjolqéj =1, ...to be executed. Each Jofj is characterized
by an activation (arrival) tima{, a IengthL(Jij), equal to the number of execution cycles for completing te and a

completion deadlind{. We say that ajotﬁ has an execution timd = %‘51) The following relations hold:

)
v
)

d;
whereT; is the task period (minimum inter-arrival time). The comjae (finish) time of the job]ij is denoted a#ij. We
define adatenesf a jobJ7 the quantitylat! = max [O, 17— df}

We denote, respectively, with; = max; {L(J{)} andk; = % the worst-case job length and the worst-case job
execution time for task. Finally, we defind/; = Z- < 1 as theutilization of taski. We assume thgfY , U; < M.

In [10] the concept opredictablescheduler is defined. A scheduler is predictable if, givem $&ts of jobs with the
same cardinality and such that, for each job in the first ketgetis a corresponding job in the second set with the same
arrival time and priority, and with execution time no larglean the job in the first set, then the finish time of each job in
the first set is no lower than the finish time of the correspoggbb in the second set. They also proved that any priority

driven scheduler ipredictable Hence, for simplicity, in the remainder we will assume thath jobe has a length

L(J)) =L,



We assume that a job cannot start executing before the mi®job of the same task has completed. We refer to this
constraint as thprecedence constraintVe stress the fact that a job can arrive ddeforethe previous jobs of the same
task have completed. We say that a jlfbis pendingat timet if and only if a{ <t< ff (hence a job under service is
still pending). Every task has a FIFO queue where its perjdingjare stored. We say that a taskdgiveif it has pending
jobs.

We define asotal speecandmaximum total speedf a multiprocessor at timg respectivelyMyusy(t) - R andM - R,
whereMyusy(t) < M is the number of busy processors at titn&Ve define asinder-loadandfull-load periods the time
intervals during whichMyusy(t) < M andMpysy(t) = M, respectively.

In the remainder of the paper we will refer to the above defsystiem as th#ulti Processor SysteiMPS).

As stated in the introduction, we considgobal priority-drivenscheduling. At each time instant the available proces-
sors are allocated to the highest priority jobs in the readyug. We assume that ties are arbitrarily broken. We allow
preemption and migration, i.e. jobs can be suspended amdriEgumed on the same or on a different processor, due to
the arrival of some higher priority job. In particular, welMidcus on a special class of global priority-driven schiguiy
algorithms — defined in the next subsection — that includes.ED

We call ajob fraction any portion of a job continuously executed between two coutsee start (or resume) and
suspend (or completion) events. We define as priority of drgttion the priority of the job the fraction belongs to. We
define achain of jobs of a task any sequence of job fractions belonging ¢oséime task and served back-to-back, and
headof the chain the first job fraction in the sequence.

We will assume any generic functigf{¢) of the time to be right continuous. Furthermore, for compess, we set
f(z™) =lim;_,,— f(¢), and we assume that the exponentiatiénwith exponent: = 0, is always equal t@ (even when

the baseu is infinite).

2.1 The Dedicated Processor System
In this subsection we introduce tliXedicated Processor SystgDPS), a special reference system that we will use to

define the class of global priority-driven schedulers forchtour results hold.

Definition 1 Given a MPS, we define as its referer2edicated Processor SystdiDPS) the system consisting of the
same task set and a multi-processor platform containingdicdged processor for each of thé tasks in the MPS; each

dedicated processor has a speRfi”* =U,- Ri=1,2, ..., N.

For any jobe we define as itwirtual finish timethe time instantIQ? at which it is completed in the DPS. Since
T, = 5— Vi, and since we assumed that all the jobs of the i-th task havstwease length;, we have that the DPS
completes each job exactly on its deadline and, hence, eotlan the arrival of the next job of the same task,v.gf.
F) = d < al*". ConsequentlyJ/ lat’ = f/ — F7. This is the crucial property that we will exploit to compute

upper bound to the maximum lateness.
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Figure 2: Comparing the MPS and the DPS.

An example of the service provided by a MPS and by its refexddS is shown in Figure 2.A. The task set is
comprised ofl periodic tasks, all with period and job lengtI8. Arriving jobs are depicted using the same conventions
as in Figure 1.

Jobs are scheduled by EDF in the MPS. Especially, since éiede arbitrarily broken, in this example we chose to
break ties in favor of lower index tasks to draw one of the fdsschedules. The figure clearly shows that, whereas the
DPS correctly schedules all the jobs, the MPS misses e.glehéline of jobJ} at time4. Upon.J} completion, taskt
has latenes3. The situation gets worse during the second period, and.Bo#ind.J? miss their deadline at timg

Hereafter we will consider the following two systems: a gan®1PS and its reference DPS. We will refer to these

systems athe MPS andthe DPS, respectively. We can now define the class of schedukergilfocus on.
Definition 2 We say that a priority-driven scheduler for the MPS is a DP&dH Time (DPS-FT) scheduler, if, denoted
with P/ the priority of the generic job’/, we have that

P/ =Pl < F/ = F} )

vJI, gt , ,
ek {Pj>P,i<:>F§<F,i

and, at each time instant, the available processors arecalied to the highest priority jobs. Ties are arbitrarily fxen.

In other words, in a DPS-FT scheduler the ordering among ijmivipies is the opposite of the ordering between job finish

times in the DPS. SinceJ? F/ = d!, EDF is a DPS-FT scheduler. Hereafter, we will assume the®8-BT scheduler

is used to schedule jobs in the MPS.



N Number of tasks in the task set

R Speed of any of the processors

M Number of processors in the system

W5(t) Total amount of service delivered by the syst&rduring [0, t]
W2 (t) Amount of service received by thieh task durind0, ¢] in a systemS
L(J) Length (number of execution cycles) of job J

J! The j-th job of the i-th task

al,s!, f] | Arrival time, start time, finish time of/

F! Virtual finish time of J7, i.e. finish time ofJ/ in the DPS

L; (Worst-case) length of i-th task

E; (Worst-case) execution time éfth task

Lax Maximum job length over all the tasks

Ernag Maximum execution time over all the tasks

lag; (t) Lag of taski (W.PT5(t) — WMPS(¢)).

Table 1: Notations used in this paper.

Under the assumptions of constant speed processors ansksfwéth constant job length, any DPS-FT scheduler
is equivalent to EDF (i.e. it generates the same schedulésjvever, all the following lemmas and theorems will be
actually proved in the more general case where all the psocehave the same time-varying spé&d), and where each
dedicated processor has time-varying spBed™® (t) = U; - R(t). In this case, the class of DPS-FT schedulers can also
include schedulers different from EDF. While this genemation does not complicate the proofs, it paves the way for
future more general results.

We define asV ¥ (t) andW,PPS (t) the amount of service provided by, respectively, the MPStaadPS to thé-
th task durind0, ¢]. We define the total amount of service provided by the MPS hadPS durind0, ] as, respectively,
WMPS (1) = S WMPS(t) andWPPS (1) = Y, WPPS(t). We define adag of the i-th task at time the following
quantity:

lag;(t) = WS (t) - WMPS (1)

For brevity, given two time instantg > ¢, we defineWV S (¢, t5) = WMPS (ty) — WMPS(¢). We use the same
short notation folV P75, WMPS 17 DPS gndlag;.

In the proofs we will often use the following property: sinB& S < R Vi, the lag of a task can not increase during
the service of one of its job chains. For example, in FigufetBe lag of taskl increases durin{f, 3], and it is equal to
2 attime3. Conversely, it decreases durifyg 6], and it is e.g. equal td at time4.

Since the lag of a task may be a useful figure of merit, in thisepave report an upper bound to the maximum per-task

lag in addition to the one on the maximum lateness. The motafntroduced until now are summarized in Table 2.1.

3 Maximum lag and maximum lateness

In this section we enunciate and briefly discuss the follgwireorems, which constitute the main results of this paper.



Theorem 1 If an MPS comprised aof/ identical processors is scheduled using a DPS-FT schedhkefollowing guar-

antees on the lag experienced by any task hold:

U, M

Viv t 1agl(t) < (1 - M) : Lz + Ul : (M — 1)A]_3 . Lmam- (2)
. ; M -1 M ,
VI dagi(f)) < Uie |\ =g - Lt ()" - Lomas | - 3)

Theorem 2 If an MPS comprised a¥/ identical constant speed processors is scheduled using&PPscheduler, the

following guarantees on the job lateness hold:

M-1 M
B4 (———
+(M—1

VJZ latf S )]Wi?) : Emaw~ (4)

The formal proofs of the theorems (and of the next corollang reported in the next section. We can note that
processors are not required to have constant speed for @ihebto hold (but they must be identical, i.e. they must all
have the same speed at any time instant). With regard to €hedywe highlight that, whe = 1, Eq. (4) collapses to
the EDF guarantedJ; lat! = 0, since(;24; )" ~* becomes equal to zero.

It is easy to prove that the right terms in Inequalities (3),dnd (4) are all non-decreasing functions\éf and that

(imas— oo 7)™~ = e. It follows that:

Corollary 1 If an MPS comprised of\/ identical processors is scheduled using a DPS-FT schedihlerfollowing

. U;
inequalities hold: Vi, t lagi(t) < (1— 57) - Li+ e Linas (5)

V] lag;(f!) Ui+ [Li + € Liaa) ©)

Furthermore, if processors have constant speed, the foilpimequality holds:
VJ! lat! < Ei 4 e Epmas. 7)

As can be seen, the corollary provides simpler but more ceatee upper bounds. Finally, it is worth noting that all

the above results hold also when tafikdyy utilize the system.

4 Proofs

In this section we will formally prove Theorems 1 and 2, anddary 1.

4.1 Proof notations and rationale
In this subsection we introduce the notations used in thefpréhe main idea behind them, and the proof strategy. The
proofs are essentially based on computing a boungktdt), from which the bound on the lateness will be then derived.

The following Lemma restricts the time instants to be coeised when computing an upper bound to the lag.



Lemma 1 The maximum lag experienced by a task is no higher than thenmaxlag that the task can experience at the

start time of some of its job fractions.

Proof. When a task is inactive, its lag is necessarily no higher tha@onsider instead a generic maximal active period
[t1, to] Of taski. Let X* be thek-th job fraction of task served by the MPS. Any time instaht [t;, t»] necessarily
falls into a sub-intervalf*~1, f¥] C [t,, 2] ranging from the finish timg*~! of a job fractionX*~!, and the finish
time of the next job fractiodk* served by the MPS (iK ¥ is the first job fraction of task executed duringg;, ts], then

we assumgff"1 = t1). Since the lag can not increase during the service of a jelhave that

max lag.(#) = lag,(s*
telfF1, £H] B8) = lag,(s0)

wheres? is the start time of the fractioX F. O

Consequently, in the next subsection we will focus on cornguthe maximum lag of the task at the start timef a
generic job fractionX belonging to ajob]ij.

First, if s = a{, thenlag, (s) = 0 because both the MPS and DPS have finished all the pendingfebs

Let us then consider the case> ag' (note that, in generak might be even larger thaﬁij, i.e. larger than the job
deadline in case of EDF).

To handle this case, we define@@) the set of the tasks owning pending jobs with priority no loth@n X at timet.
For example, in case of EDE(t) includes all the tasks owning jobs with deadline no highantn’ (i.e. than the jobX
belongs to) at time. Note thatvt € [a/, s) i € a(t), becausd! is pending duringa?, s) and, by definition, its priority
is equal to the priority of its fractioX . Figure 2.B shows the values assumeadf$) and|«(t)| during [0, s), assuming
the fractionX to coincide with the whole job’{, which in turn starts service at time= 15 in Figure 2.A.

There are only two possible causes fotto start at times > a{:

1. X is blocked by priority that is at least\/ tasks own pending jobs with priority no lower thalrj at time s~

(la(s7)[ = M).
2. X is blocked by the precedence constraint at time

In the second caseX belongs to a chain. Since the lag of a task does not increaie iWghjobs are being served,
the maximum lag of the task is trivially upper bounded by itsximum lag at the start time of the chain head. This is
in its turn equal td), unless the chain head is blocked by priority. As a conchudioe problem that remains to solve is
computing the maximum lag of the task at the start time of etiva blocked by priority. To this aim, we will use the

following two definitions.

Definition 3 Given a job fractionX blocked by priority, we define dast priority blocking periodor X the time interval
[b, s), whereb is the smallest time instarit such thatvt € [b,s) |a(t)] > M, i.e. such that at leasd/ tasks are

continuously active and have pending jobs with priority owér thanX during b, s).

10



Figure 2.B shows the last priority blocking period of the jh We note thab might in general precedﬁ. Further-
more, we will exploit the following two properties of the tgwiority blocking period:|a(b~)| < M, and the MPS is in

full load during|b, s).
Definition 4 We defind" as the set of the jobs that receive service in the MPS dybing).

Notice that, by definition of last priority blocking periothe jobs inI" have priority no lower tharX. As an example,
assuming agaiX = Jj in Fig. 2, we have that = {Jz2, JZ, J3, J3, J3, J3, J&, J3, Ji}.

The MPS starts serving only after serving part of the jobs in. However, the jobs i have priority no lower than
J7, which means that they finish no later th&hin the DPS. Hence, the DPS must complefiethe jobs inl" before it
can complete]f. Furthermore, since the MPS works at maximum total speeitigl{ir, s], it consumeshe jobs inl" at
a pace no lower than the one at which the DPS could consumedhbéng the same time interval. For these reasons,
intuitively, the maximum value dbg;(s) depends omow aheads the DPS with respect to the MPS in the service of the
jobs inT" at timeb. More formally, we will show that the maximum value lak; (s) depends on the following quantity:
> jeares 1ag;(b), wherea?s C a(b) is the subset of the tasks with positive lag at timé&Ve calltotal lag related to the
fraction X the above quantity.

We can now define the proof strategy: we will first express tlagimum lag of a task as a function of the total lag
in Subsection 4.2. This general formula will serve two psg® We will first use it in Subsection 4.3 to compute an
upper bound to the total lag itself. Then, in the last sulisectve will substitute the just computed bound in the gehera
formula, thus getting an upper bound to the lag experiengeaitask. Finally, the latter bound will be used to compute

an upper bound to the lateness experienced by a job.

4.2 Basiclemmas
This subsection contains four lemmas: the first two lemmlasvalus to provide an upper bound to the lag of a task as a
function of the total lag, whereas the last two lemmas areglgebraic facilities that will be used in next subsection t
compute the maximum total lag.

As an intermediate step for computing an upper bound to thérman lag of a task, the next lemma provides an
upper bound to the difference between the total amount ofce M 79 (b, s) that the MPS provides during, s] and
the total amount of service’ 2”5 (b, F/) that the DPS must provide durily F] to finish.J/.

In the lemma, a special set of taskés defined. We will discuss the use ®@fust after enunciating the lemma.

Lemma 2 Let X be a generic job fraction, belonging to a Jolj that starts service at time in the MPS after being

blocked by priority. Let be any subset of the/ — 1 tasks whose jobs are under execution at time We have:

WMPS(b, s) — WDPS(b, sz) < ®)
Lneares 188, (0) = Xpeo lagy(s) — L7 (J])

11



whereL”es(Jf) is the difference between the Iength];ﬁfand the portion of]j already served by the MPS at timagb is

the beginning of the last priority blocking period &f, anda?°® = {i € a(b) | lag,;(b) > 0}.

Before the proof, a quick comment on the gett can be any subset of the tasks that are active atéimeinceX is
blocked by priority, task is excluded by definition. As an example, assumlag- J; in Fig. 2, the possible values of
belong to the power set ¢fl, 2, 3}. The lemma holds for any choice of In the following, we will use this same lemma
with different values ofr to achieve different results. In fact, if we set= 0, Inequality (8) provides an upper bound to
WMPS(p, s) — WPPS(b, F7) as afunction of the total lag, which will be used for compgtim upper bound to the lag
of any task. Conversely, the case# () will be used when computing an upper bound to the total lage dioof of the
lemma follows.

Proof. To prove Inequality (8), we will first compute an upper boumdht 75 (b, ), then a lower bound t&/ PF5 (b, F7),
and finally subtract them. Lét(c) C I' be the subset of the jobs Ihissued by the tasks in, andI'(z) = I'\I'(0). We
start by computing an upper boundito™ 3 (b, s).

We consider separately the contribution due to the jold¥ i) and the contribution due to the jobslifiz). During
[b, s) the MPS serves only some fractions (at most all the fractiohthe jobs in the previous two sets. Hence, defined
asL(I'(7)), Wn{£? (b) and W% (b, s) the sum of the length of the jobs IN7), the service that the MPS gave to the
jobs inT'(7) before timeb and the amount of service provided to the tasks by the MPS duringp, s|, respectively, we
have that:

WMPS (b, s)
L(T(3)) — WAES (b) + WAES (b, 5)
L(L(@)) — WAES(b) + 32 e, WMPS (b, 5)

Second, we compute a lower bound f&r° 7 (b, FZJ) Similarly to the previous bound, we consider separatady th

I IA

9)

service received by the jobs W) and the service received by the taskginObserve that: 1) not all the jobs IN7)
have arrived at timé, 2) the DPS must complete all the jobdlif&) and the portior,”**(.J7 ) no later thanF” . It follows
thatFZ.j > b. However, part of these jobs might have arrived befgr@nd the DPS might have already (partially) served
them. The service provided to these jobs before tiran be written a8V’ 72% (b) + Wﬁps(b).

Therefore, we can write:

DPS j
w (b,le ) >

L(T(@)) + Y jee WPPS(b, F)) + L7 (J]) + (10)
— (WEEF(6) + WHPS(0)).

Now we find an upper bound to the last term. Consider a genghid je I'(7). If at time b the DPS has already
served a portion of larger than the portion already served by the MPS, thémpending in the MPS at timeand has
priority no lower thanX . Letq be the task that generatdd We have that lagb) > 0. Let W ;7% (b) andW 7% (b) be
the service that the MPS and DPS giveltbeforeb, respectively. We have that P75 (b) > WMP9(b) > 0. Finally,
let W25 (b) and W24 (b) be, respectively, the service that the MPS and the DPS gitieetipbs ofg, excludingJ,

beforeb.
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By definition,q € a?°*\o. The following two equalities hold:

lag, (b) = WPPS(b) + WLPS () — WMPS(p) — WMPS (p)
WPPS(b) = lag,(b) + WS (b) — (WPPS(b) — WjM{’S( D)

SinceW 7?75 (b) > W3'75(b), thenW2 5 (b) — WAP5(b) > 0. Hence,
WP (b) < lag, (b) + W35 (b).

Summing over all the jobg € I'(7) for which W PS5 () > WM PS (p), we get:

WFD(P)S( ) WDPS (b)
5 eaons 120,(8) + WEES()

2 qeaves 120, (D) + WM S 5 (b)-

We can divides into two subset, a subset C «(b) and a subsets such thato, N a(b) = @. Finally, defined

<
< (11)

o¥?® C o, as the subset of the tasks whose lag is positive attime have

qu(ws\a lag,(b) =

> qeares 189, (0) = 32 core- 1aG, (b)) <
qual’ns Iagq(b) - Zqu’l Iagq (b) = (12)

Eanl’”S Iag{l (b) B ZqEG Iag‘] (b) S

quapos Iagq (b) - qug Iagq7 s(b)
where the second equality follows from the fact thatc o lag, (b) = 0.
Substituting (12) in (11), we get

WHES(b) + W}?PS < > lag,(b) - > lag, ,(b). (13)

qgeaPos qeo

At this point, we can return back to Inequality (10) and write

WwbpPs (b, FJJ) >
LI@)) + Y jee WPPS (0, F7) + L7 (J))+
— X gcare 189,(0) + 3° ¢, lag, (b) — WAES(b)

Subtracting the last inequality from (9), we get:

WJVIPS(b 8) WDPS( , zj)

L(D)) — WP () + 5, WHPS(b, 5)+

~L(T(@)) — X,c, WPPS (5, FI) — Lre(J))+ (14)
5 care 180,(8) = -, 180, (8) + WAES(b) =

Y ieo WMPS(b, 5) = 3250, WPPS (b, FY) = L7 (J7) + 3 jearo- 100, (B) = 3 e, 120, (b).

IN

We can simplify the above expression by considering that,<ifFij,

EjEG' Wjjul\ljli(sb7 S) - Zon' WJD;i(:7 F7,j) <
ZjeU Wj (b) 8) - EjeU Wj (b) 8) = (15)
- Zon' 1a‘gj(b7 s)
whereas, ifs > Fij, [THE FOLLOWING INEQUALITY IS WRONG !!!]
E]Eo’ WMPS(b S) Ejeg- WjDPS(b) FZJ) S
Z]Eo’ WJWPS(b FJ) EjeU WjDPS(b) F‘zj) = (16)

- Zjea 1agj (b’ FzJ)

13



Substituting the above two inequalities in (14), we get

WMPS(b, s) — WDPS(b, FZJ)
2 jeares 1895 (0) = (X 4e, 129, (b) + 3¢, 10g; (b, 5)) — L™(J])
2 jeares 18G5 () = 32 ¢, 1ag;(s) — L7 (J])

A

(17)

a
Using the bound computed in the previous lemma, we can nowepitte following lemma, which expresses the
maximum lag of a task as a function of the total lag. Such lemuiliaconstitute the basic building block for computing

an upper bound to both the total lag and the lag of any task.

Lemma 3 Let X be a generic job fraction, belonging to a Jolj that starts service at time in the MPS after being
blocked by priority. Letr be any subset of the/ — 1 tasks whose jobs are under execution at timeWe have:
lag; (s) < L"*(J7) + — | > lag;(b) = ) lag,(s) — L™(J}) (18)
JjEares jEo

whereL”es(Jf) is the difference between the Iength]c;’ifand the portion of]ij already served by the MPS at timagb is

the beginning of the last priority blocking period &f, anda?°® = {i € «(b) | lag;(b) > 0}.

Proof. The proof strategy is as follows: we will first exprdsgi(Fij) in a convenient form, then we will find an upper

bound tolag; (s) — lag,(F7), finally we will sum this bound tdag,(F/). We have that:

WPPS(F]) = WMPS(s) + L™ (J]) (19)

K3

We can do some algebraic manipulations:

VViMPS(S) —
WMPS(E) + [WMPS (s) - WMPS(F))] - = (20)
WMPS(F]) + A

whereA = WMPS (s) — WMPS(F/), Substituting successively (19) and (20) into the definitiblag; (FY), we get

2

WiMPS( ) LreS(Jz ) _ W}WPS F]
Lres(JiJ) WMPS(S WiMPS(Fj)
Lres(J7) + A

WDPS (FJ) —_ WMPS EFJ
( (21)

=
L —

Suppose first that < F/. According to the previous inequality, Ig@”/) < L"**(J/). Furthermore, lads) —
lag,(F/) < 0. Summing these two inequalities, we get;fag < L"*(J7), which proves the thesis.

Then consider the case> F7. We have:

lag,(s) — lag,(F/) =

[WPPS (s) = WPIFS (5)] — [WPPS(F7) = WMPS (F))
[WDPS(S) —wprs(piy| - [mMPS(S) _ WMPS (i) (22)
)

VViDPS(S) _ WiDPS(Fij —A

14



where the last identity follows from (20). In what follows wse Lemma 2 to find an upper boundWa? "% (s) —
WPPS(FY).

We defineRPT5(t) as the total speed of the DPS at timed P75 (¢) as the set of the tasks active in the DPS at time
t,B; = {b<t<s|iec APP5(t)} andB; = [b, s]\B; (respectively, the busy and idle periods of tith task during

[b, s]). We can now make the following algebraic manipulations:

WiDPS(S) _ WiDPS(Fj) —
(WPPS(s) = WP (b)) — (WPPS(E]) = WPPS(b)) =
VViDPS(b 8) WDPS(b FZJ) —
U; U;
WDPS b, s +fB m RDPS( dT—fB m RDPS( ) dr — WDPS(b sz)

(23)
To get a form similar to the left member of Inequality (8) inthma 2, we will first find an upper bound W25 (b, s)+
Uri Uri j 1
I5 T - RPPS(7) - dr and then a lower bound tf); T -RPPS (7). dr + WPPS(b, F?). Since
[b, s] falls inside a full-load period (at leadt tasks are active in the MPS durifig s)), thenV¢ € [b, s] the total speed
of the MPS isRMPS(t) = M - R(t). In contrast, we have
2jearrsyUi ),
vt RPPS(4) — . _ £&e () 73 pMPS
(= > U;-RO) R ()
JEADPS(t)

Furthermore, defineg;(¢) as the fractionR””“(t) that the DPS dedicates to the- th task at timet, we havevt ¢

oy = U
B xi(t) = S Tors T Hence:
DPS( U DPS
1% bs+fBzeADps()U "RPPS(7).dr <
U; DPS DPS _
5, S T RPPS(7) -dr + [, S oanrs U -RPPS(r).dr =
5 _ pDPS(_\ . _
fb 2jeabPs () Ui r (7) - dr (24)
I Us 2jeapPsn Ui CRMPS(r) —
b S,canrs U M =

b -
MZ W S(bv S)

We find now a lower bound tg; x:() - RPP5(r) - dr + WPP5 (b, F7). Considering thafp, F7] € [b, s], and that

Vt ZjEADPS(t) Uj S M, We ha.ve

Jo, s RPT () dT+WDPS(b, Fly =
féi m - RPPS(r) - dr + me[b, F/] m PPS(7)-dr >
I # RPPS(r).dr > (25)
S RPPS(7) e =
U WDPS(b, EJ)
Substituting (25) and (24) in (23), and considering Ineiyé8), we get
WPPS(s) = WPPS(F]) <
% [WMPS(b, s) — WDPS(p, FZJ) < (26)
G [ jeare 10,(0) = X2, lag; (min(s, 7)) — L7 ()
Substituting the last inequality in (22), we get
lag, (s) — lag,(FY) =
(WPPS(s) = WPPS(F))) = A < 27)

. [ijos lag; (b) — 3, lag; (min(s, F})) — LT@S(Jij)} -A

15



Finally, summing this inequality to (21), we get the thesis.

O

The following two purely algebraic Lemmas will be used in hedbsection for finding an upper bound to the total

lag. To get a more compact notation, in both lemmas we williaes

ZCLjEO ifl<m
j=l

and

M7, =1 ifl<m

Lemma 4 Defined the following two functions:

gi(x)z{jmtﬂ; [B Yt g )} :21( (28)

withA; >0,B; >0and0< E; < =i=2, ..., K,andl < K < M; and defined

1

M
f(Ka AQ; "'7AK;B27 "'aBK;E27 "'7EK7 x)EZgz(x)

we have thaf (K, As, ..., Ak, Ba, ..., Bk, Ea, ..., Ex, x) is a non-decreasing function of

Proof. To prove the thesis, we will first prove that

Vi€e2, KV, s gj(la) —gi(lh) = —(la— ) E; - TH_,(1— Ey) (29)

We will prove (29) by induction orj. The base case, i.e. the one joe 2, follows immediately from (28). Assume now

that (29) holds for a generic We have, through (28), that
gi+1(l2) = gj+1(ln)
Ajr1i+ Ejp- {Bj+1 -y gp(lz)} —Ajp1 — Ejr - [Bj+1 DA gpl)| =
Epr (X0 gp(l) =5 gpl)] =
Ejr- Y1 [9(0) = gp(l2)] = (30)
Byir - [=(la = 1) + Xy [gp(0) = (1)) =
i [~z =)+ (2 = h) - X)p By - TGZH(1— Bn)| =
—(ly— 1) Ejy1 - [ —SY LBy TN (1 — By

We can now manipulate the quantity between the square ligacke

1—Zp2E N1 - By) =
1—Ey,—Y) B, TI'Z ;(1—E) =
1—E,—Es-(1-Ep) — Ep 4E (11— Ey)) = (31)
1-(1—Ey)—Fs-(1—Ey)—(1—Ey) - LB, THZL(1 - EBy))

(1—Ey)-|1—F5— p:4Ep L (1 — Ep))

16



Repeating the same procedure again, we get

(L=Bo)- [1= By = ¥ 4 By TGZH(1 - Bw)| =
(-B)[1- B - By (1= By~ (1- By) - T B, (- B)| = (32
(1—Es)-(1— Es)- [1 — By =Y _ B, N1 - Ey))

After j — 1 steps we get

(1= B2)- (1= By) - [1 = B = s By - 241 — En))| - =

(251 = E)] 1= Byoy = By - (1= By )] - (33)
[Hg;é(l - Eq)} A= Ej)-(1-Ej)] =
ngz(l - Eq)

which proves (29). Defined, for brevity,(z) = f(K, As, ..., Ak, Ba, ..., Bk, Es, ..., Ex, z), we can finally
prove thatf (z) is a non-decreasing function of Given two values; andl, with ls > [;, and considering (29) ,we have

$i2) = (1)
(I —l1) - [1 — Y5 By - THZ5(1 - Br)

= (34)
(la —11) - {1 - ZJKZQ E;
Such quantity is minimum if thé;s are maximum, i.eE; = +;. Hence
fl2) = f(ln) =
(o =) - 1= 57 > (35)
0
becausey < M. O
The following lemma is the basic algebraic tool we will useanltomputing the total lag.
Lemma 5 Defined
i—1
hi=C+P-|D=Y hj|i=1,2 ... K (36)
j=1
withC >0,D>00< P < +i=1,2, ..., K,andl < K < M, we have
Z(K, C, D, Pl,ljg7 ,PK) =
K-C+D-[1—(224)K]
Proof. We will prove the lemma in two steps. First, we will compute tralues off; i = 2, ..., K for which Zfil h;

is maximum, then we will prove that such maximum value is rghki thank - C' + D - [1 — (2=2)K].

In the proof we will use the following definition:

flkyc,d, z) =
flk, Ay =c, As=c, ..., A =c,
By—=d Bs—=d, ..., B, =d,
Ey=Poyg_p, B3 =P3yg_i, ..., B, = Pk, x)

where the function in the right member is the one defined inand. Considering (28), we have th@fil h; =

F(K,C,D,C+ P D).

17



But, thanks to the fact that, < - and to Lemma 4f(K, C, D, C + P, - D) < f(K, C, D, C + ; - D). Hence

e hi <
J(K,C,D,C+L-D) <
ity hi - (38)
Plzﬁ

C""%'D"‘Zf{:zh? L

1=77

We want to find now a bound on the maximum value assumed by thetredned partial sureri2 hi - From
P

1=

(28), we have

K
> imo ‘P—L
1= 77
C+Py- [D thP—l +
C+ Ps- [D hy — h2]|P1 +

(39)
K-—1
C+py-[D—h =X hj”P -
FE=1,CD~h1,C+ Py [D=h])]p _
We can consider now two cases:
1. D—-h; <0,
2. D—h; >0.
Thanks to Lemma 4, if Case 1 holds, we have
K
K h; <
B 2122 4 Plzﬁ —
FIE=1,C,D=h,CO)p_, = (40)
K
Zz:Q Pl:i Py=0

M >

Especially this means tha, = C. Consider the expression in the square brackets in (36&513151:%’132:0, we

have
D-y2 h-‘ -
2=1ha Pi=2, P=0
D—hulp_y ~C =
D—-h <
0

) the same decomposition as in (39), and the same
1 =177, F2=0

Hence, repeating for the constrained partial sm3 h

argument used for upper boundi@fi2 h; . we get
1=1737

K
o h; <
Zl73 P1:ﬁ7P2:0 —
K—-2,CD-%% h;,C =

f( ’ ’ ijl 70 ) Plzﬁ,PQZO,szo
Yiss i

Pi=, P,=0, P;=0

At this pointhy = hg = C. As before, this implies that

D—%3 h, B
E]Zl J Pi=4, P,=0,P3=0
D—-h <
0

18



in the square bracketin (36) fthr4|P1:ﬁ Py—0, P,—o- 1hiS argumentcan be inductively applied to prove tha) # h, <

0, then
ZiKzl hi <
C+L - D+YE h =
Tar DA i Pi=  Pj=0j=2,.. K
K-C+4:-D
On the contrary, thanks to Lemma 4, if Case 2 holds we have
K
Zi:? hi Pl =
1 M
f(K—].,C,D—hl,C"FM'[D—hl]HPl:ﬁ =
K
chy
22 My pg
and, hence,
Zfil hi <
C+L.D+K =
T iz hi Pj=177 j=1,2
1 K _
Ct g Dt alpy g snat Silah, =
We can now apply tozfi3 hi — the same procedure used to upper bou{rjé{:2 hi b i.e. we can
i =7 J=1,2 1=77

consider the cas® — Z?Zl h; < 0 and the cas® — 23:1 h; > 0. Using the same arguments, it is easy to show that,

in the first case
K
Zi:B hl i S

Pi=3, Po=4;
M M

Zz'K::s hi

Pi=4, P,=4,P;=0j=3,4,..,K

On the contrary, ifD — Y°7_, h; > 0, then

<

_1 _1
Py=45, Po=5;

K
27;:3 hi

K
27;:3 hi‘

Pj=4j=1,2,3

Repeating thiswo-waysprocedure fors steps, we get the following bound, wheéred K’ < K:

K
Z¢:1hi
K’ K
C+L+ D+ h + > P
M 2ic1 le:ﬁj:LZ...,K’ ik 1 ik, K
’

1 K ’ _
Ctar- D+ Eiﬁhi‘l’j:ﬁj:l,z,...,m+(K_K A

K/
(K-K')-C+ 4D+ > hi

IA

(41)

Pi=4 j=1,2,.. K’

We enter now in the second part of the proof. Especially, wepmge an upper bound tEfiQ hi ) .
’ P=2%i=1,2,.. K’

We will use a technique similar to the one used to prove Lemnvaedwill first prove that

1 M-—1]""
h7:|Pj—;4j—1,2,...,¢={C—%M-D}[ 7 } i=2,..., K (42)

We will proceed by induction o The base case is for= 2. From (36), we have

M
G P 1)
Y- C+ 4D [ M7
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Suppose now that (42) holds for a gene¥ig ¢ < K’. From (36) we have

i+1|P*]W] 1,2,...,4+1

C+M [D Zl 1hl|P__ﬁj: 2,
i -1
C""%'[D_Zlﬂ {(C[MT] +M '[M

l

“euy

i }
i r_10—1 1—
C_%'Elﬂ(c'[%\/[l} )+1v1 {D Zl 1 M [Mfl]
[C"‘M'D}'[ M 211[ 7]
But it is well known that
1 M—1 -1
(2
1_(1»]&1);
[
I
ZW—AJ;I-#l -
M- 1= (457)]
Hence
hi+1|PJ—%J:1,2, il T
[C+ D] - (1401 1= (Mdyi) =
O+ -0 [1=[1= ()] =
[C+A['D] ( M )"
which completes the induction.
Substituting (42) in the sum, we get
K/
c o hy =
» Li-2 Pi=1i=1,2,.. K’
Z [(C+_ D) (M]ul)z 1} <
K. C‘f‘]u D. EK:(M 1)7 1
K'-C+4-D-[LE (Tfly‘fl_@ -
KI'C+M'D' [Zv:l(MT) 71} _ﬁ'D
Considering again (43), we get
K/
; , <
2122 hl PJ:ﬁj—l,Q,...,K’ =
K'-C+2&-D-M-|1- (MK L.p =
K'-C+D-|1— (MK —L.D
Finally, substituting the last inequality in (41)
K
Zi:l h1

O

4.3 Bounding the total lag

To compute the total lag, we need a last intermediate lemma.

Lemma 6 Let A(f) be any subset df < M tasks under service at timieWe have that

JEA(?)

IN

Z Iagj(ﬂ <V M * Lmaa + |:1 - (M]\; 1)V:| 'jrenji(% [ Z Iagi(bj)

(43)



whereb, is the beginning of the last priority blocking period of thedl X ; of the chain, under service at tinieof the
j — thtask in A(%), a?“ is the set of the tasks whose pending jobs have priority nerdan X ;, and whose lag is

positive at time; .

Proof. The proof strategy is as follows: we will first find an upper bduo ZjeA({) lag; (t) with the same form of
functionz in Lemma 5, then we will apply this lemma to prove the thesis.3&h assume, without losing generality, that
the V tasks inA(t) are the taskg, 2, ..., V, and that they are ordered by the start timeof the chain headX;. Let

J(X;) be the job the fractiotk; belongs to, and lef" be the virtual finish time of the job. From Lemma 3 and posing

o={1,2,..., V —1}, we can write
lagy (f) <
Iagv(SV) <
L (J(Xv)) + 55 - [Zjeare 1, (bv) = )5 lag;(sv) = L*(J(Xy))| < (44)
Lres(J(Xy)) + e - [me lag; (bv) — Y0 lag; (F) — L™ (J(Xv))
because the lag of a task can not increase during the exeaitione of its chains, and tasks 2, ..., V — 1 are
continuously served duringy, ¢]. Defined
Lag= I
i€EQ
we can further write
lag, () <
M Lres(J(Xv)) + 5f - [Lag— 275 lagy ()| < (45)
ML Linas + % - |Lag— Y27 lag, (1)
Now we define:
M-—1 U =
(=1 23, _ Xi -
(B = =7 Lmas + 77 - | L2G ;Iagf( ({)1 j=1,2,...V
Considering that
lag, () < Av(f) =ML L., + % [Lag SV lagi (1) — lagy,, () (46)
and adding lag_, () we get
lag, _(t) +lagy (t) <
Iagv_l(ﬂ +Av(t) = (47)

f(2a A2 = % ' Lmawa BQ - Lag Z lagz(l?) E2 Vv |agvf1@)
where the functiory in the last equality is the one defined in Lemma 4, and, as suisha non-decreasing function of

lagy_, (). Hence, to find an upper bound to its value, we look for the mami value that can be assumed by lag().

From Lemma 3, posing = {1, 2, ..., V — 2}, and repeating the same steps as above, we have
lag,, ,(t) <
_ U V-2
M Linas + =57+ - [Lag— 320 Iagi(ﬂ}
Av-1(t)
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Hence, considering (47), the previous bound and Lemma 4 awe h

lag, _,(t) +lag,(f) <
Av-1(t) + Av (D)

By inductively applying this argument, aft&r steps we get

\%4 14
> lag,(®) < YA ()
j=1 j=1
Finally, from Lemma 5 we have
E;‘/:l )‘j {) =
AV, C=M2 L, .. D=lagP =% P=% .. P =U <
V_]W—l_L L M—-1\V
S5 Lmaw +Lag- [1 = (457)"]

O

We can now compute an upper bound to the total lag.

Theorem 3 For any job fractionX which starts service in the MPS after being blocked by ptyovire have

Z lagj M 1)M_2 ’ (M - 1) * Linag (48)

j€ares

whereb is the beginning of the last priority blocking period &f, anda??® = {i € «(b) | lag;(b) > 0}.

Proof. We will proceed by induction. For the base case,Xebe the first job fraction blocked by priority from the
beginning of the lifetime of the system. In such a caseincides with the beginning of the first congestion perimrttiie
MPS, which impliesy ;... 1ag; (b) < 0. Hence (48) trivially holds.

For the inductive step, suppose that (48) holds for all thefjactions blocked by priority that started service before

X. From the definition of last priority blocking period, it folvs thatj«(b~)| < M — 1. Hence
|aPos| < ‘oz(b_)| <M-1

Furthermore the tasks iw?°* cannot be blocked by priority at time". Hence, they are all under service at tifne

Since the lag is a continuous function, from Lemma 6 and Iaéty(48), we can write
Zjeaivob Iag]( )
|apo€| ]W[l Lonas + [1 _ (]Vf]\;[l)\ap |] - MaXgqpos [EZEQPU Iag,( )
@207 ML L 4 [1 = (M) 1] [ (LM (M = 1) L]
whereb; anda’;* are defined as in Lemma 6.
To find an upper bound to the rightmost term, we can considr tt) as|a?°®| increases(242)1*"""l decreases,
hence[1 — (X=1)I2"*I] increases; 2) as previously stated®s| < M — 1. Hence
M
D jeares 12G;(0) <
(M = 1) 8L Ly [1 = ()M ()M 2 (M = 1) Lol =
( ) MT; ' mem? + (Ll)M_Q ' [(M - 1) ' me?] +
_(%)Mflf(Mﬂ) (M =1) - L] =

(M —1)- M=Lop o (M M2 (M = 1) Lypaa] +
— [(M — 1) . % ° Lmaw]

Collecting terms, the thesis followsl
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4.4 Maximum lag and maximum lateness

We can now prove Theorems 1 and 2, and Corollary 1.

Proof of Theorem 1 Thanks to Lemma 1, to prove (2), all we need is to compute aemppund to the lag experienced
by taski at the start time of any job fractionX belonging to ajob]f . Apart from the trivial case when the JQI;Z starts

service as it arrives, and is served until completion, wedigtinguish between two cases:

1. X has been blocked by priority. Thanks to Lemma 3, and choasiad), we have

lag;(s) <
LT‘E’G(JZJ) + % . [Zje(lpos |agj (b) - LTES(JZ‘J):|

whereb is the beginning of the last priority blocking period far. Substituting (48) (Theorem 3) into the last

expression, we get

lag,(s) <

Lo () 4 %[GR M 2 (M = 1) L] — 7o) =
‘ o Lres () (49)

Lrpe(JzJ)_i_Ul |:(M1V£1)M 2, [%Lmaw] _TL:| =

(=% L) + Ui (DY Lo

which proves (2).

To prove (3), assume thaf is the last fraction off/. We havelWMP5 (s, f7) = L7**(J7), while during the same

time interval W25 (s, f/) < U, - L75(J7) (recall thatvt RPFS(t) = U, - R(t)). As a consequence:

lag;(f7) —lag;(s) =
WiDPS(Sw qu) - Wz‘MPS(Sa fzj) <
(U; — 1) - Lres(J})

As a conclusion, considering also (49):

- lag,(f/)

, lag;(s) + lag; (f}) — lag(s)

( — %) .Lres(JiJ) + (Ul _ ]_) . Lres(JZ) +U; - (%)JWAS - Lonas
(]‘ - %) ’ Ul ’ LreS(JiJ) + Ui ! (%)Ajig : Lmaw

IRVANI

which proves (3).

2. X has been blocked by precedence. Ket"s* be the head of the chai belongs to. Considering thaf /st
necessarily falls into the previous case, that (ap < lag;(stirst), and Inequality (49), Inequality (2) follows.

Using the same arguments as in the previous case, (3) cameEnms wellO

We can finally prove our upper bound on the maximum lateness.

Proof of Theorem 2 Recall that lat = f/ — F/. If f/ < F/, the thesis trivially holds. Consider the cage> F/.

The schedules of (the fractions off in the MPS and in the DPS, and hence the differeffce- F/, do not depend on
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whether task issues new jobs afteﬁ. Suppose that indeed an indefinite number of jobs has bagedissy task at time

a{. We will prove the thesis by contradiction. Suppose that:

f-F >
1 M—1 M M—3 _
R M 'Li+(]y[71) LmaT -
1 M-—1 M \M-3
U;-R U7 M 'Li+(]u_1) LmaT

In such a case we have that:

P M -1 M
DPS(pj I Bl M-3
WEPSEL, 1) > U |2 L+ (5 L
Furthermore, sinc® °P5 (F/) = WMPS(f/) we have

lag;(f7) =

WPPS(fiy - WMPS (17 =

WPPS(f1) — WPPS(F)) =

WPPS(E!, fl) >

which contradicts Inequality (31

Proofof Corollary 1  Itisimmediate to note that (2), (3) (4) are non-decreasimgfions ofM if and only if (%)M*1

is a non decreasing function 8f. AssumingM > 1, and defined = M — 1 > 0, we have
(L )M1 = (14 L)

Definedf(z) = (1 + 1), we can compute the first derivative

3

(Y

)

T N
I

etoli+] flog [1 4+ 4]~ 1. L] =
eloelhd] Tlog (14 1]~ 1. 1] =

erlog[1+1] | {1og [1+3] - =

Itis easy to prove thab|[f(x)] > 0Vz > 0, hence

1

Ve >0 f(z) < lir>n 14+ —=)® =exp(1)
x—>00 €T

As a consequence:

M
M—-1

VM >1 ( YM=1 < eaxp(1). (50)

Substituting (50) in (2), we get

lag;(t) <
) _ 2
(1= %) L+ Ui eop(D) - (M2)?  Law <
(1— UM) - Li 4+ exp(1) - Las
Substituting (50) in (4): :
lat! <
LMl Lt eap() - (M) Las)} <

% “[Li + exp(1) - Linax)
The same substitution can be used to prove(s).
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Figure 3: Inset (a) and (b): ratio between experiencedéseand upper bound. Inset (c): value of the upper bound.

5 Simulations

We simulated EDF global scheduling over 19 SMP platformsmased of2, 3, ..., 20 unit-speed processors, respec-
tively. For each SMP, we considered four different typesasktsets, all with total utilization equal to the number of
available processors. The first type of task sets was maglebhiiht tasks i.e. tasks with utilization no higher thans.

In the second type, half of the total capacity was devotedytd tasks, while the other half was devotechieavy tasks
i.e. tasks with utilization higher thain5. The third type of task sets was made only of heavy tasks. dimtHf type was
made only ofveryheavy tasks, i.e. tasks with utilization higher thag.

For each SMP and for each type of task $éttask sets were randomly generated. Finally, for each taskise
corresponding EDF schedule was simulatedfot 0% - 10 ticks, 10° ticks being the maximum task period.

For the first type of task sets, Figure 3.(a) shows, for eacP,3M maximum ratio recorded, over thigsimulation
runs, between the lateness experienced by a task and theofate upper bound (4) for the task. We will shortly refer
to the above quantity as the maximum ratio. For each SMP, ts@nnnatio, i.e. the ratio between the mean lateness
experienced by the task with the maximum ratio and the uppend (4) is reported as well.

As can be seen, the maximum ratio decreases as the numbercalpors increases. Especially, it is equdl.®3
for 2 processors, and it stabilizes at ab0out> for a number of processors larger theth The mean ratio soon becomes
negligible. Moving to the successive types of task setd) it maximum and the mean ratio increase. The highest values
are achieved in case of only very heavy tasks, as shown iné-By(b). Figure 3.(c) shows the values of the upper bound
(4) for the tasks that experienced the ratio reported inti(tge Especially, the values of the upper bound reported in
Figure 3.(c) coincide with the ones we obtained for the otheye types of task sets (in fact, according to (4), the bound
does not depend on the utilization of the tasks).

Figure 3.(b) shows that the bound is virtually tight for tw@pessors. Then the maximum ratio stabilizes at approxi-
mately1/3 for a number of processors larger theh

In the end, according to the simulations, the bound is tighy dor very heavy tasks on 2 processors, while it is
too conservative in the other cases. However, we could noergeée all the possible light and heavy task sets during

simulations. Finally, the actual bound may depend on theatheristics of the tasks (computation time and periods).
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Indeed, determining a possible relationship between thpegties of a task set and the resulting worst-case latésess

still an open problem.

6 Conclusions

In this paper we propose an upper bound to the lateness oksbfime tasks scheduled by EDF on a SMP. First we show
that not all scheduling algorithms are able to provide a bledriateness in the case of full utilization. Then, we prepos
a bound and prove its correctness. The proposed bound isnmpdesclosed form, and it has been shown to be virtually

tight for heavy task sets on 2 processors. According to thelsitions, the bound is not tight for more than 2 processors

and for light task sets.

Obviously, we could not generate all the possible light asaMy task sets during simulations. Hence, proving whether
the bound is tight, for light task sets, and for more than Zessors, is still an open problem. We believe that possible

relationships between the properties of the tasks and tinaldmund should be investigated.
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