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Abstract

Deficit Round Robin (DRR) is probably the most scalable fair-queueing packet scheduler. Unfortunately, it suffers from
high delay and jitter with respect to a perfectly fair (and smooth) service. Schedulers providing much better service
guarantees exist, but have a higher computational cost.
In this paper we deal with this issue by proposing a modification scheme for reducing the amortized execution time

of the latter, more accurate schedulers. Modified schedulers preserve guarantees close to the original ones, and can also
handle seamlessly both leaves and internal nodes in a hierarchical setting.
We also present Quick Fair Queueing Plus (QFQ+), a fast fair-queueing scheduler that we defined using this scheme,

and that is now in mainline Linux. On one hand, QFQ+ guarantees near-optimal worst-case deviation with respect to a
perfectly fair service. On the other hand, with QFQ+, the time and energy needed to process packets are close to those
needed with DRR, and may be even lower than with DRR exactly in the scenarios where the better service properties
of QFQ+ make a difference.
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1. Introduction

Most network applications require or benefit from their
packet flows being guaranteed a given share of the link
bandwidth. In addition, packet delays and packet delay
variations play a critical role with time-sensitive applica-
tions. In this respect, a well-known figure of merit re-
lated to delay variations is packet jitter, commonly, but
not uniquely, defined as the average deviation from mean
delay.
In many contexts, packet schedulers are a necessary

component for providing applications with service guar-
antees exactly in terms of the above figures of merit. As
a first example, consider the public Internet. On one side,
both the total IP traffic and, in particular, the compo-
nent of time-sensitive traffic, are growing and expected to
continue to grow at a high rate [1]. On the other side, to
reduce costs, operators strive to achieve their target service
levels with as little resources as possible. In other words,
operators tend to provide available bandwidths close to
offered loads, often by keeping active only the minimum
number of links needed.
Considering also the magnitude of the fluctuations of

arrival rates in a complex network like Internet, it fol-
lows that the links of, e.g., DiffServ-compliant Internet
routers [2] are likely to experience (increasing) saturation
periods. Being the offered load of EF queues an important,
and growing, portion of the total load on these links [1], EF
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queues may then become long. In the end, some unlucky
EF flows may easily experience high packet delays/jitters
if, e.g., some other flows have a bursty behavior and no
intra-class scheduling is performed1.
Besides, given the continuous growth of time-sensitive

traffic, and hence of its variance, a fixed inter-class band-
width distribution may be a too rigid scheme. It might
be instead more appropriate to let the cumulative fraction
of the bandwidth devoted to time-sensitive applications
dynamically grow with the actual cumulative demand of
these applications. A simple way to achieve this goal is to
use just a flat weighted fair-queueing discipline, i.e., a dis-
cipline where each flow is assigned a weight, and that tries
to provide each flow with a fraction of the link bandwidth
proportional to the weight of the flow. Flows in the EF
class could then be simply assigned a higher weight than
the other flows.
There are then contexts where stronger, and often

tighter, bandwidth and packet-delay/jitter guarantees
must be provided by contract. Examples are managed
networks for implementing IPTV services, or, at a smaller
scale, automotive and avionics local communication net-
works. In particular, the latter local networks are being
used more and more to carry both safety-critical and in-
fotainment traffic. In this respect, the ideal way both to
prevent infotainment traffic from interfering dangerously
with safety-critical traffic, and to meet the typical require-
ments of infotainment traffic, is to guarantee the latter

1Packet-dropping disciplines are of paramount importance as well,
but they are out of the scope of this paper.
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both a minimum and a maximum (capped) bandwidth,
plus a small-enough packet delay/jitter.
Also in these contexts with stronger requirements, band-

width over-provisioning may not be an option, because
of costs, power consumption and other technical issues.
As a consequence, the use of schedulers providing tight
bandwidth and packet-delay guarantees may make the dif-
ference between feasibility and unfeasibility of the target
time-sensitive applications.
Unfortunately, systems with a low computational power

may have difficulty executing (also) packet schedulers at
line rate, whereas, on high-speed systems, scalability is-
sues arise when the number of flows and the speed of the
outgoing link grow. On the other hand, recent results on
fast packet I/O [3] reduce packet-processing time at such
an extent that millions of packets per second can be easily
processed on commodity hardware. Such a dramatic im-
provement leaves more time for packet scheduling. Only
very efficient schedulers can however comply with the ex-
tremely short packet transmission times of a 1-10 Gbit/s
link.
Deficit Round Robin (DRR) [4] is probably one of the

best candidates to keep up with line rate, both on slow and
high-speed systems. In fact, DRR is one of the simplest
fair-queueing schedulers providing strong service guaran-
tees. Unfortunately, if packet sizes and/or flow weights
vary, then DRR suffers from a high worst-case packet de-
lay and jitter with respect to an ideal, perfectly fair (and
smooth) service. As shown in Section 6, in simple, realistic
scenarios where packet sizes and flow weights vary, both
packet delay and delay variation can easily be so high to
make time-sensitive applications unfeasible, even if their
bandwidth requirements are fully met.
On the opposite side, several accurate fair-queueing

schedulers do not suffer from this problem, as they guaran-
tee near-optimal deviation with respect to the above ideal
service (with any packet-size and flow-weight distribution).
Some of these schedulers are also quite efficient [5, 6, 7];
but even the fastest of them, namely Quick Fair Queueing
(QFQ) [5], is at least twice as slow as DRR. In this paper
we try to fill this gap with a solution that allows near-
optimal service guarantees to be provided at a computa-
tional cost comparable or even lower than that of DRR2.

Contribution

We propose a general modification scheme for fair-
queueing schedulers, in which packet flows are grouped
into aggregates, and the original, costly operations of the
schedulers are used to schedule aggregates and not single
flows. Inside aggregates, flows are scheduled with DRR.
Modified schedulers are also ready to schedule internal
nodes in a hierarchical setting (see Section 7 for a com-
parison against classical hierarchical schedulers).

2Part of the material presented in this paper can also be found in
our preliminary work [8].

Denoted as M the maximum number of flows in an ag-
gregate, the scheme that we propose enjoys the following
key property: during full-load periods, the higher M is,
the longer each aggregate is served before the costly op-
erations of the original scheduler are executed. Hence the
closer the amortized execution time of the modified sched-
uler becomes to that of DRR.

Of course, the higher M is, the more service guarantees
deviate from the original ones. In this respect, in this
paper we also compute the guarantees provided by the
modified scheduler in case the original one belongs to the
family of the fair-queueing schedulers providing optimal or
near-optimal worst-case service guarantees [9, 10, 6, 7, 5].
In particular, we show how little the QoS degradation is,
even for values of M for which the execution-time cut is
close to its maximum.

In practical terms, the main information conveyed by
the formulas reported in this paper is that both the origi-
nal and the modified schedulers always guarantee a smooth
service, even in a possible scenario where the theoretical
bounds are actually reached. On the opposite side, we also
show bounds for DRR, which highlight that DRR suffers
from serious packet-delay and jitter problems. Our exper-
imental results confirm all these facts.

Finally, we describe Quick Fair Queueing Plus (QFQ+),
a new scheduler that we have defined by applying this
scheme to QFQ [5], and that we have implemented in
Linux (QFQ+ replaced QFQ in mainline Linux from
3.8.0). Through QFQ+, we complete the analysis of QoS
degradation with a concrete example, by comparing the
service guarantees of QFQ+ against those of QFQ and
DRR, analytically and experimentally. We also compare
the efficiency (execution time, energy consumption, ...) of
these schedulers experimentally. The gist of our results
is that with QFQ+ the time and the overall system en-
ergy needed to process packets is definitely lower than with
QFQ, and may be even lower than with DRR exactly in the
scenarios where the accurate service guarantees of QFQ+
make a difference with respect to DRR.

The last, apparently surprising result is a consequence
of a more general fact highlighted by our experiments: the
order in which a scheduler dequeues packets influences the
execution time and the energy consumption of both the
scheduler itself and the other tasks involved in processing
packets.

Organization of this document

In Section 2 we describe the modification scheme in de-
tail, whereas in Section 3 we introduce QFQ+. In Sec-
tion 4 we show the general service guarantees provided by
modified schedulers, which we prove then in Section 5. In
Section 6 we instantiate these guarantees for QFQ+. Fi-
nally, after comparing the contributions provided in this
paper against related work in Section 7, we report our ex-
perimental results in Section 8.
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2. Modification scheme

Symbol Meaning

∗
k A superscript indicates a quantity related to an

aggregate

∗i A subscript indicates a quantity related to a
flow

N Total number of flows

M Maximum number of flows in an aggregate

k Aggregate index

mk Current number of flows in the k-th aggregate

L, Lk Max size of any packet in the system or in the
k-th aggregate, in bits

Q Size of the transmit queue in bits, plus L

R Rate of the link for a constant-rate link

φi Weight the i-th flow

φk Weight of each flow in the k-th aggregate

φmin Minimum weight among all flows

∗(t1, t2) Given a generic function ∗(t), the notation
∗(t1, t2) ≡ ∗(t2)− ∗(t1) indicates the difference
between the values of the function in t2 and t1

W (t),
W k(t),
Wi(t)

Number of bits transmitted (globally, for the
k-th aggregate, or for the i-th flow) in [0, t]

W (t),

W
k
(t),

W i(t)

Number of bits dequeued, i.e., sum of the sizes
of the packets dequeued from the scheduler
(globally, for the k-th aggregate, or for the i-
th flow) in [0, t]

Bi(ta) Backlog of the i-th flow right after time ta

∆Sk ∆Sk− + ∆Sk+, where ∆Sk− and ∆Sk+ are
the two timestamp-error terms defined in Ap-
pendix A.

Table 1: Definitions of the symbols used in the paper.

In this section we show the modification scheme and
discuss its main benefits. For the reader convenience, the
notations used in this paper are also reported in Table 1.
Besides, for ease of presentation, hereafter we call SCHED
a generic fair-queueing scheduler to which our modification
scheme is applied, and SCHED+ the resulting new sched-
uler. The modification scheme described in the rest of this
section is depicted in Figure 1. As already said, SCHED+
groups flows into aggregates, where an aggregate is a set
of at most M flows, all with the same maximum packet
size and the same weight, and M is a free parameter3.
We define as backlog of a flow the sum of the sizes of the

packets currently stored in the flow queue, and as back-
log of an aggregate the sum of the backlogs of its flows.
Finally, we say that a flow/aggregate is backlogged if its
backlog is higher than 0.
SCHED+ iteratively chooses the aggregate to serve.

Once selected an aggregate for service, SCHED+ serves

3In an actual instance of SCHED+, such as the Linux implemen-
tation of QFQ+, aggregates can be created, and flows can be added
to/removed from them, when new flows are created or when flow
parameters are changed.
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Figure 1: Graphical representation of the modification scheme.

only the flows in that aggregate for a while, then it chooses
the next aggregate and so on. SCHED+ establishes the
maximum amount of service that each aggregate can re-
ceive once selected for service, by assigning to each back-
logged aggregate, say the k-th aggregate, a budget equal
to mkLk bits, where mk is the current number of flows in
the aggregate and Lk is the maximum packet size for the
flows in that aggregate. On each invocation of the function
dequeue() (Figure 1), which dequeues and returns the next
packet to transmit, SCHED+ decreases the budget of the
in-service aggregate by the size of the packet. SCHED+
selects a new aggregate either when the budget of the in-
service aggregate, say the k-th aggregate, finishes, or when
the backlog of the aggregate finishes. In the first case,
SCHED+ assigns again a budget equal to mkLk to the
deselected aggregate and reschedules it.

SCHED+ uses DRR [4] to schedule flows inside aggre-
gates, hence we describe briefly how DRR works before
we continue to describe SCHED+ itself. DRR serves flows
in rounds: in each round, DRR allows each flow to trans-
mit a maximum number of bits, called quantum, equal to
the sum of a fixed component—proportional to the weight
of the flow—and a variable component (deficit counter),
equal to the portion of the quantum not used by the flow
in the previous round.

For each invocation of the function dequeue() during
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the service of an aggregate, SCHED+ chooses the next
flow to serve, among the ones of the aggregate, through
a weightless DRR (all the flows in an aggregate have the
same weight), using the maximum packet size of the flows
as the fixed component of the quantum. Then SCHED+
dequeues and returns the head packet of the flow.
Finally, as for the selection of the next aggregate,

SCHED+ associates each aggregate also with a weight
equal to the sum of the weights of the flows it contains,
and chooses the next aggregate according to the SCHED
policy, using the budgets of the aggregates in place of the
sizes of the head packets of the flows, and the weights of
the aggregates in place of the weights of the flows.
We compare SCHED+ against a classical hierarchical

scheduler in Section 7. We conclude instead this section
by discussing a useful property of SCHED+, on which the
benefits of the modification scheme depend. These benefits
are then reported in Section 2.1.
SCHED+ does not use any information about the head

packet of a flow before it is the turn of the flow to be served
(at that point SCHED+ uses the size of the head packet
to decide whether the aggregate has enough budget and
whether the flow has enough credit, as well as, if it is the
case, to decrement both the credit of the flow and the bud-
get of the aggregate). As a consequence, even if the head
packet of some already backlogged flow changes, SCHED+
does not need however to update either the schedule of
the flows inside the aggregate or the overall schedule of
the aggregates. SCHED+ needs to change the schedule
only when it has to re-schedule the in-service aggregate,
or when it has to add a newly backlogged aggregate. In
what follows we refer to this property as head-packet inde-
pendence.

2.1. Benefits

Computational cost. The frequency at which the
original SCHED operations are executed to schedule ag-
gregates can be easily controlled in a system with many
flows and under heavy load, i.e., exactly where efficiency
is important. In fact, in such a system, the number of dif-
ferent weights and packet sizes is likely to be lower than
the number of flows. It follows that mk ∼ M and, al-
most always, most flows are backlogged for each aggregate.
This fact, combined with the head-packet independence of
SCHED+, has two consequences. First, the costly opera-
tion of choosing a new aggregate and updating the sched-
ule is performed only after ∼ML bits are served. Second,
the schedule of the aggregates almost never needs to be
updated on packet enqueues. In the end, the higher M
is, the closer the amortized computational cost is to the
one of a weightless DRR. This fact is confirmed by our
experimental results (Section 8).
Compliance with non-FIFO queues and hierar-

chical settings. If the queue of a flow is not FIFO, then
its head packet may change after the aggregate to which
the flow belongs has been already scheduled. This may
be the case, e.g., if the flow represents an internal node

in a hierarchical setting. In fact, an internal node sched-
ules packets of other internal nodes or leaves (flows), and
hence its next packet to dequeue may change when a new
packet arrives for a leaf in the sub-tree rooted at the node.
SCHED+ does not need to perform any schedule change
after these head-packet changes, thanks to head-packet in-
dependence. Hence SCHED+ does not need further (log-
ical) modifications to handle flows with non-FIFO queues
or internal nodes in a hierarchical setting.
The only requirement for the internal nodes is that their

interface includes a peek next packet() function. This is,
e.g., the case for the classes that implement both leaves
and internal nodes in Linux [11].

3. Quick Fair Queueing Plus (QFQ+)

Quick Fair Queueing Plus (QFQ+) is a new fair-
queueing packet-scheduling algorithm, obtained by apply-
ing the scheme reported in Section 2 to QFQ [5]. A cer-
tain familiarity with the non-trivial operations of QFQ is
needed to understand the steps of QFQ+, which we de-
scribe in an extended version of this paper [12]. For the
reader interested also in full details and in all corner cases,
a working C implementation of QFQ+ can be found in
the test environment [12] that we have used for our ex-
periments. A fully functional, production-quality imple-
mentation of QFQ+ can instead be found in the Linux
kernel (from 3.8.0). This implementation is basically just
a super-set, in terms of functionalities, of the above test
implementation. We provide more details on the Linux-
kernel implementation of QFQ+ in the next section.

3.1. Linux implementation

The main difference between, on one side, the algorithm
described in [12] and the QFQ+ implementation in the test
environment, and, on the other side, the Linux-kernel im-
plementation of QFQ+, is that in the latter the value ofM
is not free, but automatically computed as min(8, Qpkts),
where Qpkts is equal to one plus the size, in number of
packets, of the transmit queue of the interface to which
QFQ+ is attached (e.g., the size of the buffer ring in typ-
ical modern NICs). Hence, even if the transmit queue is
large, M is however limited to a small value.
As discussed in Section 4, this fact guarantees that

QFQ+ always provides service guarantees close to those
of QFQ. In particular, basing on our experimental results,
we have chosen 8 as maximum possible value ofM because
it provides a convenient trade-off between service guaran-
tees and performance (Section 8.1). We derive the exact
guarantees provided by QFQ+ in Section 6, by instantiat-
ing for QFQ+ the general service guarantees reported in
Section 4.

4. Service guarantees of SCHED+

In this section we show and discuss the worst-case ser-
vice guarantees that SCHED+ provides in case SCHED is
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either WF2Q [9] or WF2Q+ [10], or else SCHED is any
approximate variant [6, 7, 5] of any of the previous two
fair-queueing schedulers. To get simpler formulas, here-
after we assume that the sum of the weights of the flows,
say Φ, is not higher than 1. The corresponding guarantees
for the case Φ > 1 can be obtained by just replacing φi

and φk with φk

Φ and φi

Φ in the next statements, where φi

and φk are the weights of, respectively, the generic i-th
flow and any flow of the k-th aggregate.
We summarize our results before reporting exact formu-

las. To this purpose, we introduce the following symbols:
Li, Lk, L and R, where the first three symbols denote
the maximum packet size for, respectively, the generic i-
th flow, any flow of the k-th aggregate, and all the flows,
while R denotes the link rate if constant. Besides, we fo-
cus on the following reference quantity for measuring the
accuracy of the time guarantees of a scheduler.

Definition 1. We define packet service time for the i-th
flow, the transmission time of one maximum-size packet
of the flow at the rate reserved to the flow.

On a constant-rate link, since the minimum fraction of
the link bandwidth reserved to the i-th flow is equal to
φiR, the packet service time for the flow is equal to Li

φiR
,

and, in particular, to Lk

φkR
if the flow belongs to the k-th

aggregate.
To highlight the importance of this quantity, consider

the packet flow generated by a time-sensitive application.
For the application to be feasible, the packet service time
for the flow must be low enough to meet the latency re-
quirements of the application. This implies that packet
delays, or delay variations, in the order of that service
time are likely to be tolerated or even negligible for the
application. For example, in a VoIP application, a delay
equal to the service time of a few packets would be much
shorter than the maximum latency allowed for an intelli-
gible conversation, while short audio gaps could be easily
concealed through small playback buffers. A summary of
our results follows.

Time guarantees. On a constant-rate link, SCHED+
guarantees, for any flow of the k-th aggregate, the
same worst-case packet completion times as SCHED,
plus an additional packet delay variation4. This vari-

ation is loosely upper-bounded by 4 Lk

φkR
+ (M − 1)L

R
,

i.e., by the sum of four packet service times for the
flow, and of the transmission time ofM−1 maximum-
size packets at line rate.

Bit guarantees. Over any time interval, SCHED+
guarantees that any flow of the k-th aggregate receives
at least the same worst-case amount of service (num-
ber of bits transmitted) as under SCHED, minus a lag
loosely upper bounded by 4Lk + (M − 1)L.

4We assume that positive variations correspond to increased de-
lays.

What is the actual impact of the above degradation of

the service guarantees? As for the terms 4 Lk

φkR
and 4Lk,

a packet-delay-variation component ranging from Lk

φkR
to

6 Lk

φkR
is already present in the worst-case packet comple-

tion times guaranteed by the SCHED schedulers consid-
ered in this section, while a lag component ranging from
2Lk to 7Lk is already present in the guaranteed service
lag5 (Appendix A). In practice, for both SCHED and
SCHED+, these components are low enough to guarantee
that both schedulers always provide a smooth service, and,
even in a possible scenario where the theoretical bounds
are actually reached, they can still meet the requirements
of time-sensitive applications.
Regarding instead the terms (M − 1)L

R
and (M − 1)L,

the extent to which they worsen guarantees for a given M
depends on the presence and the size of a FIFO transmit
queue, such as a buffer ring in a modern NIC. These queues
are typically used to drive communication devices and to
absorb link-feeding latencies. Both the packet completion
times and the lag guaranteed by any scheduler happen to
always contain a variation component equal, respectively,
to Q

R
and Q (Appendix A), where Q is equal to the size

of the transmit queue, in bits, plus the maximum possible
packet size. In the end, if ML ∼ Q orML≪ Q, then both
the bit and the time guarantees provided by SCHED+ and
SCHED are comparable or close to each other. In Section 6
we provide a concrete example of the degradation of the
service guarantees for the pair QFQ/QFQ+ as a function
of Q.
As for the possible values of Q in a real system, the sizes

of the transmit queues vary greatly from system to system,
ranging from 1-2 packets to even one thousand of packets.
Fortunately, considering, e.g., QFQ and QFQ+, and ac-
cording to our experiments, M = 2 is enough for QFQ+
to achieve a lower execution time than the original sched-
uler, while with M = 8 the execution-time cut achieved
by QFQ+ is already close to its maximum possible value
(Section 8).
The service guarantees reported so far derive from the

more accurate and informative guarantees that we show
in sections 4.1 and 4.2, namely the upper bounds that
SCHED and SCHED+ guarantee to two special indexes:
the Time and the Bit Worst-case Fair Indexes (T-WFI and
B-WFI). We compute, intentionally, slightly loose upper
bounds, to get simpler formulas. In sections 4.1 and 4.2
we also discuss the additional useful figures of merit that
these indexes measure, such as packet delay variation. We
prove instead the service guarantees of SCHED+ in Sec-
tion 5. Finally, for the reader convenience, we also report

5WF2Q and WF2Q+ provide an optimal service in that they

guarantee the minimum possible values, Lk

φkR
and 2Lk , for these

components. The other instances of SCHED+ are instead near op-
timal in that these components, in the service guarantees of these
schedulers, are equal to small multiples of the above minimum pos-
sible values.
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full proofs of the original service guarantees of SCHED
(T-WFI and B-WFI) in Appendix A.

4.1. Time Worst-case Fair Index (T-WFI)

The T-WFI of a scheduler for a given flow, defined as-
suming that flow queues are FIFO and the link rate is
constant [5], is equal to the difference (packet delay) be-
tween the worst-case transmission time guaranteed by the
scheduler to any packet of the flow, and the maximum
time by which the packet should be transmitted, ideally,
according to the weight and the backlog of the flow [9]. In
particular, this ideal time is equal to the maximum time
by which the packet may be completed in case, after the
arrival of the packet, the flow was guaranteed its reserved
share, φiR, of the link bandwidth.
Before reporting the formula of the T-WFI, we point

out that the worst-case packet delay with respect to the
above ideal completion time is not only a measure of fair-
ness. This delay, and hence the T-WFI itself, happens to
be also equal to the worst-case delay variation with respect
to the ideal completion time: in fact, in any realistic sce-
nario, any fair-queueing scheduler usually transmits most
packets no later than their ideal completion times. Finally,
using the T-WFI we can compute actual worst-case packet
completion times as well, by just summing the T-WFI it-
self to ideal completion times.
To introduce the formal definition of the T-WFI of a

scheduler, consider that, since any flow has a FIFO queue,
the ideal worst-case completion time for a packet of the

i-th flow arriving at time ta is equal to ta +
Bi(ta)
φiR

, where

Bi(ta) is the backlog of the flow just after time ta (because,
defined as tc the completion time of the packet, and con-
sidering that the packets of the flow are dequeued in FIFO
order, it follows that the packets transmitted during [ta, tc]
are exactly the packets that happen to be backlogged af-
ter time ta). Accordingly, the T-WFI guaranteed by a
scheduler to the i-th flow can be defined as follows:

T-WFIi ≡ max
p∈i-th flow

[

tc −

(

ta +
Bi(ta)

φiR

) ]

(1)

where p is any packet of the i-th flow, ta is the arrival time
of p, and tc is the completion time of p under the sched-
uler at hand. Note that the order in which the scheduler
dequeues packets determines also the value of Bi(ta).

T-WFI of SCHED

The packet size Li and the weight φi of a flow happen to
be, for any instance of SCHED, the only per-flow quanti-
ties on which the service guarantees provided to that flow
depend (Appendix A). In this respect, all the flows that
would belong to the same aggregate in SCHED+, say the
k-th aggregate, have Li = Lk and φi = φk. Hence they all
share the same T-WFI under SCHED, which we denote
as T-WFIkSCHED. Hereafter we focus on T-WFIkSCHED

instead of the T-WFI of SCHED for the generic i-th flow,
because it is easier to compute the T-WFI of SCHED+

starting from the former than from the latter. From The-
orem 5 in Appendix A we have (substituting the equality
∆W = Q in the statement of the theorem)

T-WFIkSCHED ≤
Lk

φkR
+

∆Sk +Q+ L− Lk

R
. (2)

∆Sk is equal to ∆Sk− + ∆Sk+, where ∆Sk− and ∆Sk+

are two timestamp-error terms, as defined in Appendix A
(see Table 1 for the other, already introduced symbols).

T-WFI of SCHED+

Theorem 1. SCHED+ guarantees the following T-WFI
to any flow in the k-th aggregate

T-WFIkSCHED+ ≤
(

5−
1

mk

)

Lk

φkR
++

∆Sk +Q+ML−mkLk

R
.

(3)

From this theorem, which we prove in Section 5.5,
and (2), we get that SCHED+ guarantees the same T-
WFI as SCHED, plus the following extra delay:

(

4−
1

mk

)

Lk

φkR
+

(M − 1)L− (mk − 1)Lk

R
. (4)

4.2. Bit Worst-case Fair Index (B-WFI)

Consider any time interval [t1, t2] during which the i-
th flow is continuously backlogged. Denoted as W (t1, t2)
the total number of bits transmitted by the system dur-
ing [t1, t2], and according to the weight φi of the flow, in
a perfectly fair system the flow should receive at least a
minimum amount of service (number of bits transmitted)
equal to φiW (t1, t2). The B-WFI of a scheduler for the i-th
flow is equal to the maximum difference between this min-
imum service and the actual amount of service, Wi(t1, t2),
provided by the scheduler to the flow [10].

We extend the standard definition of the B-WFI to take
into account the following fact too: the number of bits
of the i-th flow that can be transmitted during [t1, t2]
is upper-bounded by: the backlog Bi(t1) plus the sum
of the sizes, say Ai(t1, t2), of the packets of the i-th
flow arriving during the open interval (t1, t2). Defined
Bi(t1, t2) ≡ Bi(t1) + Ai(t1, t2), we define the B-WFI as
follows:

B-WFIi ≡

max
[t1, t2]

{ min [φiW (t1, t2), Bi(t1, t2)]−Wi(t1, t2) } .
(5)

The B-WFI is an accurate measure of both the short-
and the long-term fairness of a scheduler. Besides, the B-
WFI is defined independently of the bandwidth of the link
and of whether the latter fluctuates.
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B-WFI of SCHED

Basing on the same arguments used to introduce
T-WFIkSCHED in Section 4.1, we focus on the B-WFI guar-
anteed by SCHED to any flow that would belong to the
k-th aggregate under SCHED+, and denote this metric as
B-WFIkSCHED. From Theorem 4 in Appendix A (substi-
tuting again the equality ∆W = Q), we have

B-WFIkSCHED ≤ φkQ+ φk∆Sk + (1 − φk)Lk + L. (6)

B-WFI of SCHED+

Theorem 2. SCHED+ guarantees the following B-WFI
to any flow in the k-th aggregate:

B-WFIkSCHED+ ≤

φkQ+ φk∆Sk + (5−
1

mk
−mkφk)Lk +

M

mk
L.

(7)

Comparing (7) against (6), we have that the B-WFI
guaranteed by SCHED+ coincides with that guaranteed
by SCHED, except for an additional term

(

4− (mk − 1)φk −
1

mk

)

Lk +

(

M

mk
− 1

)

L. (8)

5. Proof of the service guarantees of SCHED+

In this section we prove the upper bound to the T-WFI
of SCHED+ reported in Theorem 1. The proof set pro-
vides also most of the steps needed to prove the upper
bound (7) to the B-WFI. For the interested reader, the re-
maining steps for proving also this bound can be found in
Appendix B. In this section we compute an upper bound
to the T-WFI of DRR too. We use the latter bound to
better put the service provided by QFQ+ into context in
Section 6.

For brevity, hereafter we refer to the upper bound in
Theorem 1 as just the T-WFI of SCHED+. Our strat-
egy for computing the T-WFI of SCHED+ moves from
the strong similarities, highlighted in Section 5.1, be-
tween SCHED and SCHED+. Thanks to these similar-
ities, we can compute the service guaranteed by SCHED+
to the generic k-th aggregate as a whole in two steps.
The first step consists basically in multiplying by mk or
M some terms in the T-WFI of SCHED. This yields a
sort of baseline per-aggregate guarantees (Section 5.2), to
which we have to add, as a second step, a further term,
which accounts for a peculiarity of only SCHED+ (Sec-
tion 5.3). Finally, we can get the T-WFI of SCHED+
from per-aggregate guarantees, as a function of how DRR
distributes the service provided to an aggregate among
the flows of the aggregate (Section 5.4). In Section 5.5
we do apply all of these steps to compute the T-WFI of
SCHED+.

5.1. Similarities between SCHED and SCHED+

SCHED is a timestamp-based scheduler: it associates
both packets and flows with virtual start and finish times-
tamps. SCHED computes the timestamps of a packet as
a function of various parameters, among which the size of
the packet itself. All the other parameters being equal,
the larger a packet is, the larger its virtual finish time is.
Finally, SCHED timestamps flows in such a way that the
timestamps of a flow coincide with the timestamps of its
current head packet. Leaving out eligibility [5] for simplic-
ity, SCHED does its best to serve flows in virtual-finish-
time order.

Consider now SCHED+. To highlight the similarities
between SCHED and SCHED+, hereafter we pretend that
the batch of packets dequeued while an aggregate is in
service is a sort of head super packet of the aggregate.
Accordingly, and considering that the weight of the k-th
aggregate is equal to mkφk, we define the following per-
aggregate T-WFI for SCHED+:

ˆT-WFI
k

SCHED+ ≡ max
p̂∈k-th aggr.

[

t̂c −

(

t̂a +
B̂k(t̂a)

mkφkR

) ]

(9)
where p̂ is any super packet of the k-th aggregate, t̂a is the
arrival time of the super packet, defined as the minimum
among the arrival times of the packets in the super packets,
t̂c is the completion time of the super packet, defined as
the completion time of the last packet in the super packet,
and B̂k(t̂a) is the sum of the sizes of the super packets
of the k-th aggregate that are transmitted during [t̂a, t̂c].
We had to define B̂k(t̂a) in this more complex way, with
respect to just the backlog of the k-th aggregate, because
super packets are not necessarily transmitted in the same
order as they arrive (they are just a device to group the
packets dequeued during each service period).

An upper bound to ˆT-WFI
k

SCHED+ could be easily de-

rived from the bound (2) to T-WFIkSCHED, on condi-
tion that SCHED+ timestamped super packets with the
same rules with which SCHED timestamps packets, and
scheduled aggregates as a function of the timestamps of
their head super packets, with the same policy with which
SCHED schedules flows as a function of the timestamps of
their head packets.

In this respect, SCHED+ does schedule aggregates with
the SCHED policy, but uses budgets to timestamp ag-
gregates (Section 2). Hence both the above requirements
would be met (only) if the budget of every aggregate sched-
uled for service always coincided with the size of the cur-
rent head super packet of the aggregate. We assume that
this does hold true, as a simplifying assumption for com-
puting baseline guarantees in the next section.
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5.2. Baseline guarantees

Lemma 1. If the simplifying assumption reported in Sec-
tion 5.1 holds, then we have

ˆT-WFI
k

SCHED+ ≤
Lk

φkR
+

∆Sk +Q+ML−mkLk

R
.

(10)

Proof. Consider the following facts:

1. the service of each super packet is non-preemptive in
the same way as the service of a single packet is;

2. the size of a super packet of the k-th aggregate is equal
to at most mkLk bits instead of just Lk bits;

3. the term L in (2) takes into account the fact that,
under SCHED, at most one out-of-order, maximum-
size packet p′ may be dequeued between the arrival
and the dequeueing time of any packet p [5]6: the
same problem occurs therefore under SCHED+, in
terms of super packets, but the maximum size of a
super packet is now ML bits instead of just L bits;

4. the weight of an aggregate is equal to mk times the
weight φk of the flows it contains.

5. for any instance of SCHED, the cumulative error term

∆Sk is a multiple of Lk

φk , hence its value does not

change if Lk and φk are replaced with mkLk and
mkφk.

Combining these facts with the simplifying assumption
in Section 5.1, we get that (2) can be turned into the
bound (10) by replacing the maximum packet sizes Lk and
L with mkLk and ML, and the weight φk with mkφk.

In the next lemma we increase the bound (10) so as to
hold also in case the simplifying assumption does not hold.

5.3. Removing the simplifying assumption

Lemma 2. Regardless of whether the simplifying as-

sumption in Section 5.1 holds, ˆT-WFI
k

SCHED+ is upper-

bounded by the right-hand side of (10) plus Lk

φkR
.

Proof. If the backlog of an aggregate finishes before the
aggregate consumes all of its budget, then the timestamps
of the aggregate happen to be higher than they would
have been if computed as a function of the actual size of
the head super packet of the aggregate. This causes the
service of the aggregate to be unjustly postponed.
To compute a loose but simple upper bound to how long

the service of the aggregate may be postponed, suppose
that the size of the head super packet of the aggregate
tends to 0. The aggregate is scheduled as if the size of its
head super packet was instead mkLk bits. Since SCHED+
emulates the service of an ideal, perfectly fair system (Ap-
pendix A), and such a system would serve the aggregate

6Namely, a packet p′ that, according to its timestamps, should
have been dequeued after p.

at a rate at least equal to its reserved fraction of the link
bandwidth, namely mkφkR, it follows that the aggregate
is scheduled as if its head super packet was completed in

the ideal system, in the worst case, mkLk

mkφkR
−0 = Lk

φkR
time

units later than it actually would be. This yields a service

delay equal to Lk

φkR
.

5.4. Service guarantees of DRR

In this section we compute both the T-WFI of DRR, and
the guarantee provided by DRR, in terms of bits dequeued,
to the flows in a SCHED+ aggregate. We use the latter
guarantee to compute the T-WFI of SCHED+.

We derive both guarantees from a special lower bound
to the number of bits dequeued by DRR for the i-th flow,
in a time interval [t1, t2] during which the flow is contin-
uously backlogged. To write this bound, we need to in-
troduce some additional notations: we denote as W (t1, t2)
and W i(t1, t2) the sum of the sizes of all the packets de-
queued during [t1, t2], and of all the packets of the i-th
flow dequeued during [t1, t2], respectively.

We define as transmission opportunity for the i-th flow
every maximal sub-interval of [t1, t2] during which the flow
is continuously at the head of the DRR queue. Let h be
the number of transmission opportunities for the i-th flow
during [t1, t2]. To get a simpler formula, we assume that
t1 is lower or equal to the beginning of the first transmis-
sion opportunity. From [4, Lemma 2], we can derive the
following loose upper bound:

W (t1, t2) =

N
∑

j=1

W j(t1, t2) <

h

N
∑

j=1

φj

φmin

L+ (N − 1)L =

h

∑N

j=1 φj

φmin

L+ (N − 1)L

(11)

where φj is the weight of the j-th flow and φmin is the
minimum weight among all flows.

This bound is certainly loose if the maximum size of
the packets of some flow is lower than L. We use this
loose bound instead of a tighter one to avoid even longer
formulas. As for the minimum service guaranteed to the
i-th flow, we have, again from [4, Lemma 2],

W i(t1, t2) ≥ (h− 1)
φi

φmin

L− L (12)

where φi is the weight of the i-th flow and the factor h− 1
in the first term is not equal to h because t2 may be, in the
worst case, equal to the beginning of the h-th transmission
opportunity, and hence the i-th flow may have not yet used
such opportunity at all by time t2.

We want now to upper-bound W (t1, t2) as a function
of W i(t1, t2). To this purpose, solving (12) for h, we can
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write

h ≤
φmin

φi

(

W i(t1, t2)

L
+

φi

φmin

+ 1

)

. (13)

Then, replacing this inequality in (11), we get the following
bound to the total number of bits that might be dequeued
in a time interval during which W i(t1, t2) bits of the i-th
flow are dequeued:

W (t1, t2) ≤
(

W i(t1, t2)

L
+

φi

φmin

+ 1

)

∑N

j=1 φj

φi

L+ (N − 1)L =

∑N

j=1 φj

φi

W i(t1, t2)+

(

∑N
j=1 φj

φmin

+

∑N
j=1 φj

φi

+N − 1

)

L.

(14)

The term
∑

N
j=1

φj

φi
W i(t1, t2) is equal to the total number

of bits that would be dequeued, in an ideal, perfectly fair
system, while W i(t1, t2) bits if the i-th flow are dequeued.
Hence, the term in the last line of (14) represents the extra
service that the real system has to provide, in the worst-
case, to guarantee that the i-th flow receives the same
amount of service as in the ideal system.
This extra service leads to a high T-WFI for flows with

a low packet service time (Definition 1), as we discuss after
proving the following theorem.

Theorem 3. Denoted as T-WFIi,DRR the T-WFI guar-
anteed by DRR to the i-th flow, we have

T-WFIi,DRR ≤

(

∑N

j=1 φj

φmin

+

∑N

j=1 φj

φi

+N − 1

)

L

R
+

Q

R
.

(15)

Proof. We get the thesis by: 1) replacing (instantiating)
t1 and t2 in (14) with the time instants ta and tc at which
a packet of the i-th flow is enqueued and dequeued, 2)
turning the resulting bound into an upper bound to t2−t1,
basing on the fact that bits are dequeued at a constant
rate R, 3) adding a further worst-case delay Q

R
due to the

transmit queue.

The following negative property unfortunately holds
for (15): being all the other parameters equal, the smaller
the packet service time for the i-th flow is, the larger the
bound (15) is with respect to the packet service time itself.
In particular, the terms L

R
and N are independent of the

packet service time, and N is of course very large in a sys-

tem serving many flows. Even worse,
∑

N
j=1

φj

φmin
≥ N always

holds. It follows that, as we show with numerical examples
in Section 6, a T-WFI in the order of the bound (15) may
easily be unbearable for flows with a short packet service
time, i.e., the most time-sensitive flows.

Unfortunately, the inequality we have started from to
prove (15), namely (11), has been in its turn proved in a
rather likely scenario, i.e., in the case a packet of the i-th
flow arrives after the flow has already been served for the
current round. Hence, as confirmed by our experimental
results in Section 8, DRR is likely to actually exhibit a
T-WFI in the order of the upper bound (15) in realistic
scenarios.
Finally, to get the service guaranteed by the internal

DRR scheduler to the flows in an aggregate, we have just
to instantiate (14) for the flows of the aggregate. In partic-
ular, we have to substitute the following equalities in (14):

N = mk, φi = φk, φmin = φk,
∑N

j=1 φj = mkφk, L = Lk

and W (t1, t2) = W
k
(t1, t2), where W

k
(t1, t2) is the sum of

the sizes of the packets of the flows of the k-th aggregate
dequeued during [t1, t2]. By doing so, we get

W
k
(t1, t2) ≤ mkW i(t1, t2) +

(

3mk − 1
)

Lk. (16)

5.5. Proof of Theorem 1 (T-WFI)

From Lemma 2, and defined, for brevity: ∆ ≡ ∆Sk +
ML−mkL, we get the following upper bound to the dif-
ference between the completion time t̂c of a super packet
p̂ of the k-th aggregate under SCHED+, and the arrival
time t̂a of the super packet:

t̂c − t̂a ≤
W

k
(t̂a, t̂

′
c)

mkφkR
+ 2

Lk

φkR
+

∆+Q

R
(17)

where t̂′c is the dequeueing time of the last packet of the

super packet p̂, and W
k
(t̂a, t̂

′
c) is the sum of the sizes of

the super packets of the k-th aggregate dequeued during
[ta, t̂

′
c].

To simplify next derivations, we turn (17) into a bound
to t̂′c− t̂a. According to the derivations in Appendix A, the
term Q

R
in (17) comes from the obvious bound t̂c ≤ t̂′c+

Q
R
.

Substituting this inequality in (17), we get

t̂′c − t̂a ≤
W

k
(ta, t̂

′
c)

mkφkR
+ 2

Lk

φkR
+

∆

R
. (18)

We turn now (18) into a guarantee on the queueing delay
of the packets of the generic i-th flow of the k-th aggregate
under SCHED+. To this purpose, we consider a packet p
of the i-th flow that belongs to the super packet p̂. We
denote as ta and t′c the arrival and the dequeueing times
of p. The packet p experiences its maximum queueing
delay if it is the first packet of the super packet to arrive,
and the last one to be dequeued, i.e., if ta = t̂a and t′c = t̂′c.
Super packets are just a device for highlighting the sim-

ilarities between SCHED and SCHED+, hence we can
imagine, without affecting the packet service order, to
break the super packet to which p belongs in such a way
that the last two equalities hold. Substituting these equal-
ities in (18), we get

t′c − ta ≤
W

k
(ta, t

′
c)

mkφkR
+ 2

Lk

φkR
+

∆

R
. (19)
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Since (1) is a function of Bi(ta)
φkR

, our next step to get

the T-WFI of SCHED+ for the i-th flow (belonging to
the k-th aggregate) is to turn also (19) into a bound that

is a function of Bi(ta)
φkR

. To this purpose, we consider that,
since the i-th flow has a FIFO queue, the packets dequeued
during [ta, t

′
c] are exactly the packets that are present in

the flow queue just after time ta. Hence, using the same
notation as in (16), we have Bi(ta) = W i(ta, t

′
c). From this

equality and (16), it follows that W
k
(ta, t

′
c) ≤ mkBi(ta)+

(3mk − 1)Lk. Replacing this inequality in (19),

t′c − ta ≤

mkBi(ta) + (3mk − 1)Lk

mkφkR
+ 2

Lk

φkR
+

∆

R
≤

Bi(ta) +
(

3− 1
mk

)

Lk

φkR
+ 2

Lk

φkR
+

∆

R
=

Bi(ta)

φkR
+

(

5−
1

mk

)

Lk

φkR
+

∆

R
.

(20)

Finally, consider that, if tc is the completion time of p,
then tc ≤ t′c +

Q
R
. Replacing this inequality in (20),

tc −

(

ta +
Bi(ta)

φkR

)

≤

(

5−
1

mk

)

Lk

φkR
+

∆+Q

R
. (21)

6. Service guarantees of QFQ+

In this section we show an upper bound to the T-WFI
guaranteed by QFQ+ to any flow of the k-th aggregate.
We denote this T-WFI as T-WFIkQFQ+. To put the bound
into context, we also instantiate it for a possible real flow
set, and compare it against the bounds guaranteed by QFQ
and DRR. We report instead an experimental comparison
among the T-WFIs of these schedulers in Section 8. For
brevity, we do not show also the bound to the B-WFI
guaranteed by QFQ+: this bound can be derived from (7)
with the same simple steps through which we derive the
bound to T-WFIkQFQ+ below, and the relative degradation
of this bound, when moving from QFQ to QFQ+, is about
the same as for the bound to T-WFIkQFQ+.

To upper-bound T-WFIkQFQ+, we instantiate (3) for

QFQ+. As for the term ∆Sk in (3), from [5] we have

that, if SCHED = QFQ, then ∆Sk− = 2mkLk

mkφk = 2Lk

φk

and ∆Sk+ = 4mkLk

mkφk = 4Lk

φk . Considering also that

M = min(8, Qpkts) in QFQ+, and that Q = QpktsL, we
get

T-WFIkQFQ+ <
(

11−
1

mk

)

Lk

φkR
+

Q+min(8L,Q)−mkLk

R

(22)

According to (22), (2) and (15), the near-optimal guar-
antees of QFQ+/QFQ and the guarantees of DRR dif-
fer significantly for the flows with shorter packet service
times (Definition 1) than N L

R
. Hence, the higher N is and

the more differentiated packet service times are, the more
the difference between the quality of service provided by
QFQ/QFQ+ and the quality of service provided by DRR
is evident.

Flow sets can easily be significantly skewed in terms of
packet service times. Consider for example some VoIP
flows sharing a transmission link with other non time-
sensitive flows. A possible weight distribution for guaran-
teeing both a higher bandwidth and a lower delay to the
VoIP flows might be, e.g., assigning each VoIP flow ten
or even twenty times the weight of any of the non time-
sensitive flows. It follows that, if the size of: the packets of
the non time-sensitive flows and the VoIP packets are, re-
spectively, about 1.5kB and 200B, then the ratio between
the packet service time for the VoIP flows and the packet
service time for the other flows ranges between 1/150 and
1/75. This ratio may become up to 42 times as low if
TSO/GSO is used, because in that case the maximum size
of the packets, as seen by the scheduler, becomes 64kB.

To highlight, with a simple numerical example, the dif-
ference in the quality of service provided by QFQ/QFQ+
and DRR in such a skewed scenario, consider a flow set
made of 1000 flows, with a weight sum equal exactly to
1. For simplicity, suppose that all packets have the same
size L. Hence, to get differentiated packet service times,
assume that one of the flows, say the i-th flow, has weight
0.25, and belongs to the k-th aggregate, whereas all other
flows have the same weight, equal to 0.75 · 10−3. The
resulting minimum ratio between packet service times is
then about 1/333.

In the above scenario, and according to (22) and (4),

T-WFIkQFQ+ ≤
39L+Q+min(8L,Q)

R
, and the extra delay (and

variation) of QFQ+ with respect to QFQ is 11L+min(8L,Q)
R

.
Regarding DRR, from (15) we have instead T-WFIi,DRR ≤
(

1000
0.75 + 4 + 1000− 1

)

L
R
+ Q

R
= 2336.3L+Q

R
.

Table 2 reports the values of the bounds for increasing
sizes of the transmit queue. Values are measured in multi-
ples of 4L

R
, i.e., of the packet service time for the i-th flow.

The T-WFIs, and hence the packet delay variations (Sec-
tion 4), guaranteed by QFQ and QFQ+ are comparable.
More importantly, for small values of Q, they are equal to
at most a few tens of packet service times for the flow. In
this respect, in Section 8 we also compare T-WFIs exper-
imentally for this scenario, and we show that the T-WFIs
actually recorded for QFQ and QFQ+ are 4-6 times as
small as these bounds. In the end, even in such a skewed
scenario, both QFQ and QFQ+ easily meet the delay re-
quirements of time-sensitive applications (according to the
discussion about packet service times in Section 4).

Things change dramatically with DRR, whose T-WFI
bounds are much higher than those of QFQ/QFQ+, and
hundreds of times as high as the packet service time, even
with short transmit queues (for the reasons highlighted af-
ter the proof of Theorem 3). This negative property holds
also for the T-WFI of DRR that we have recorded experi-
mentally (Section 8). Finally, as for long transmit queues,
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even with a size of 3000 packets, the T-WFIs guaranteed
by QFQ and QFQ+ are still 1.8 times as low as the one
guaranteed by DRR.

Size of the transmit queue (packets)
Sched 1 10 100 1000 2000 3000

QFQ+ 10.5 14.5 37 262 512 762

QFQ 7.5 9.7 32.2 272 507 757

DRR 584 587 609 834 1084 1334

Table 2: Bounds to T-WFIs, and hence to packet delay variations
with respect to a perfectly fair service, guaranteed to the highest-
weight flow, for increasing sizes of the transmit queue (lower is bet-
ter). Measured in multiples of the packet service time for the flow.

7. Related work

To the best of our knowledge, no other general mod-
ification scheme like the one we propose in this paper
is available in the literature. However, both hierarchi-
cal schedulers and two sets of O(1)-cost schedulers have
something in common with our solution. The first set of
schedulers is the family of efficient, approximate variants
of WF2Q+ [6, 7, 5], whereas the other set is the family of
enhanced round-robin schedulers [13, 14, 15, 16, 17].
Hierarchical schedulers and SCHED+. As well as

a classical hierarchical, two-level scheduler, SCHED+ is
made of:

• a root scheduler—the per-aggregate variant of
SCHED—which schedules internal nodes (aggre-
gates);

• one DRR local scheduler for each internal node, which
schedules the leaves of the node (individual flows).

But there is an important difference between SCHED+
and a classical hierarchical scheduler (such as the one de-
scribed in [10]). In the latter, the root scheduler may
choose a different internal node, and hence needs to be
invoked, on each packet dequeue. Besides, the data struc-
ture of the root scheduler may need to be updated on each
packet enqueue involving a non-backlogged flow. In con-
trast, the key property of SCHED+ is that it can invoke
the costly SCHED operations at a much lower frequency,
as discussed in Section 2.1.
Approximate variants of WF2Q+. These sched-

ulers share with our scheme the use of flow grouping for
reducing the computational cost of the original algorithm.
The most costly packet enqueues or dequeues for these
schedulers are the ones in which either the scheduling or-
der of the flow groups must be changed or the next group
to serve must be found. Fortunately, more than one packet
is usually enqueued or dequeued, on average, before these
operations need to be executed. But there is no further
control over the frequency of these operations. In contrast,
one of the peculiarity of SCHED+ is that it is tilted exactly
toward serving the flows in the same aggregate, and hence

avoiding costly operations, for a configurable amount of
time. Finally, as for a performance comparison, QFQ is
the lowest-cost approximate variant of WF2Q+ [5], and,
as a shown in Section 8, QFQ+ outperforms QFQ.

Enhanced round-robin schedulers. In a sense, these
schedulers adopt the opposite strategy than the previ-
ous set of schedulers: instead of starting from an accu-
rate scheduling policy and reducing its cost through flow
grouping and other techniques, they use DRR or a slightly-
modified DRR as an efficient building block to realize more
accurate policies. Differently from, e.g., QFQ+, and like
DRR, all of these schedulers suffer from a T-WFI and a
B-WFI that are independent of the packet service time
for the flow, and that grow linearly with the number of
competing flows. As shown in sections 6 and 8, such a de-
viation may be problematic for flows with a shorter packet
service time than other competing flows. The only excep-
tion is FRR [17], whose T-WFI is however several times
as high as that of QFQ [5], and hence of QFQ+.

8. Experimental results

In this section we compare QFQ+, DRR and QFQ
against each other experimentally, in terms of both effi-
ciency and service guarantees7. As for efficiency, we show
our experimental results about number of instructions, ex-
ecution time, cache misses and energy consumption. Re-
garding guarantees, we report our results on T-WFI (and
hence on packet delay variation, Section 4.1). As for B-
WFI, the relative performance of the schedulers in terms
of B-WFI, in our experiments, has been about the same
as in terms of T-WFI.

Test environment. We have run our experiments us-
ing the test environment [12], which is a slightly improved
version of the original test environment [18]. An exist-
ing packet scheduler can be easily plugged into this envi-
ronment, after at most some little interface changes. In-
side the environment, the scheduler can then be exercised
with the desired sequence of enqueue/dequeue requests,
through a controller that iteratively switches between two
phases: an enqueue phase in which it generates fake pack-
ets by picking them from a free list, and a dequeue phase in
which it dequeues packets from the scheduler and reinserts
them into the free list. The switch occurs according to
two configurable max-total-backlog and min-total-backlog
thresholds.

Configuration. Each run has consisted of 50M packet
enqueues plus 50M packet dequeues8, with the controller
configured so as to let flows oscillate between null backlog

7We have measured the performance of WF2Q+ too, but the
overall cost of processing packets with WF2Q+ has happened to be
from 3 to 4 times as high as with the other schedulers in any scenario.
We do not report these results for brevity.

8See [12] for the script, run test.sh, that we have used to run the
tests.
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and a backlog of 30 packets each. Such an enqueue/de-
queue pattern has happened to be the most demanding
one for the schedulers. Packets had a fixed size of about
1700 bytes, with no cache-line alignment. The payload
of the packets has never been either read or written. No
migration and no packet drop have occurred in any run.

Flow sets. We have considered four flow sets:

1k-w1 : 1k flows all with weight 1;

1k-wmix : 500 + 250 + 125 flows with weights 1, 2, 8;

32k-w1 : 32k flows all with weight 1;

32k-wmix : 16k + 8k + 4k flows with weights 1, 2, 8.

Note that weights are integers, as this is the type of
the weights in existing implementations of QFQ+, QFQ
and DRR. In contrast, we have assumed that the sum of
the weights was not higher than 1 when computing service
guarantees, just to simplify formulas.

The number of competing flows in 1k-w1 and 1k-wmix is
low enough that a negligible number of cache misses occurs
(Section 8.2). This helps us to isolate the net execution
time of the schedulers from other factors. The other two
flow sets represent instead a possible heavy-load period for
a high-speed system. Finally, we have considered 1k-wmix
and 32k-wmix because the QoS guaranteed by an accu-
rate fair-queueing scheduler differs from that guaranteed
by DRR only if flows have different packet service times
(Definition 1), as shown in sections 6 and 7.

To complete the analytical comparison carried out in
Section 6 with experimental results, only in the experi-
ments about service guarantees we have considered also
the flow set described in that section9. We denote this
very skewed flow set as 1k-highw.

Efficiency measurement. For each run we have mea-
sured: total number of instructions, total execution time,
total number of cache misses and total energy consumption
of the system (we have used perf [19] to measure number
of instructions and cache misses). Then we have divided
the above quantities by the number of enqueues, obtaining
the cumulative average, for each quantity, for one packet
generation, enqueue, dequeue and disposal. One of the
shortcomings of this approach is that we could not mea-
sure, e.g., the net execution time of each scheduler. We
have opted however for this method because of the pre-
cision problems related to measuring directly the above
quantities for very short time periods: in some scenar-
ios the packet-processing time has been even lower than
100ns. As for the net execution time of the schedulers, we
can still get an indication of it by difference with respect
to the packet-processing time with a FIFO scheduler (see
below).

Statistics. We have repeated each run ten times and
computed inter-run statistics for each value of interest. In
particular, for each batch of ten runs, the variance among

9More precisely, to implement the same weight ratios of this sce-
nario in the test environment, we assigned 333 to the weight of the
only high-weight flow, and 1 to the weight of each of the other flows.

the recorded values has been negligible, so hereafter we
report only inter-run averages.
Arrival patterns. Including also the cost of gener-

ating and discarding packets in our statistics has helped
us to highlight an important point: the order in which
a scheduler dequeues packets, with respect to the order
in which packets arrive, influences the execution time not
only of the scheduler but also of the other tasks involved
in processing a packet (Section 8.2). To investigate this
point in more depth we have considered two extreme and
opposite packet arrival (generation) patterns. In the first,
smooth pattern, the controller, in the enqueue phase, it-
eratively generates one packet for each flow with a lower
backlog than the other flows (i.e., it fills flow queues in a
round-robin fashion). In the second, bursty pattern, the
controller generates the packets for each flow in bursts of
random size, ranging from 1 to 16w, where w is the weight
of the flow.
Schedulers. We have computed the statistics men-

tioned so far for the implementations of QFQ+, DRR and
QFQ contained in the test environment. These implemen-
tations are just ports, with minimal interface changes, of
the original, production-quality versions of the same sched-
ulers under Linux or FreeBSD. Only for QFQ+, the ver-
sion in the test environment differs also in that M is not
computed automatically, but is set manually.
We have also considered, as a baseline case, a FIFO

scheduler. Given its negligible overhead, this scheduler
allows us to measure, by difference, the net execution time
of the other schedulers (unfortunately only in some of the
scenarios, as explained in detail in Section 8.2).
Test equipment. We have run our tests on two sys-

tems with the following software and hardware character-
istics:

• Ubuntu 12.04, kernel 3.6.0,
Intel Core i7-2760QM @ 2.40GHz, gcc 4.6.3 -O3

• OS X 10.7.4, Darwin 11.4.0,
Intel Core i5-2557M @ 1.7 GHz, gcc 4.2.1 -O3

Since the relative performance of the schedulers has been
about the same on the two systems, we report our results
only for the first system.
In the next sections, first we show how we have tuned

the maximum size M of the aggregates in QFQ+, then we
compare the performance of QFQ+ against the one of the
other schedulers.

8.1. Tuning the size of the aggregates

Figure 2 shows the average execution time of QFQ+ for
smooth arrivals, as a function of M . The relative decrease
of the execution time as a function of M has been about
the same also for bursty arrivals (not shown). As can be
seen, the relative decrease is quite small when passing from
M = 8 to M = 16. This is the main reason why we have
chosen 8 as the maximum possible value forM in the Linux
implementation of QFQ+ (Section 3).
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Figure 2: Execution times of QFQ+ as a function of M , with smooth
arrivals (lower is better).

The performance of QFQ+ reported in the next sections
is the one for M = 8 too. In addition, by comparing
the execution times shown in the next section (Figure 4)
with the ones in Figure 2, one can have an idea of the
relative performance of QFQ+ with respect to the other
schedulers, also for the other values of M . For example,
with M = 1, the execution times with QFQ+ are about
the same as with QFQ.

8.2. Efficiency comparison

Number of instructions. We start our comparison
from the (average) number of instructions executed by the
schedulers, shown in Figure 3 for smooth arrivals. We have
got about the same figures with bursty arrivals, which we
do not report. By computing differences with respect to
FIFO, we can see that the number of instructions executed
by QFQ+ (M = 8) is about 40% lower than QFQ, and at
most 50% higher than DRR. The number of instructions
does not increase dramatically when moving from 1k to
32k flows.

Execution time and cache misses - Smooth ar-
rivals. Things do change with execution times and cache
misses, shown in Figure 4 and 5 for smooth arrivals (re-
call that we consider the cumulative execution time of a
packet allocation, enqueue, dequeue and disposal). First,
execution times with 32k flows are much higher than with
1k flows, as the number of cache misses with 32k flows is
much higher too, and cache misses severely impact execu-
tion times.
Second, the execution time with QFQ+ is from 0.3 to 0.9

times as high as that with QFQ, and it even happens to be
lower than that with DRR with 32k-wmix. The main rea-
son for this inversion is that QFQ+ handles cache misses
better than DRR with this large, mixed-weight flow set,
as discussed below.
QFQ+ provides a smoother service than DRR: 1) thanks

to eligibility [9], QFQ+ interleaves smoothly the service of

high-weight aggregates with the one of low-weight ones,
2) the flows in each aggregate are served in a round-
robin fashion. In contrast, the service of DRR is more
bursty: DRR serves each backlogged flow repeatedly until
the quantum of the flow finishes. And the quantum of a
flow is proportional to its weight.
As a consequence of the smoother service of QFQ+,

the packet-dequeue order of this scheduler is closer to the
packet arrival order than that of DRR (as we have also
verified by tracing packet arrivals and dequeues). And the
order in which packets are generated tends to be close to
the order in which packets are stored in memory. This
improves the effectiveness of caches, basically thanks to
prefetching.
With 1k flows the number of cache misses is so low that

it has no influence on the relative execution times of the
schedulers, which basically match the relative performance
of the schedulers in terms of number of instructions exe-
cuted. With 32k flows the number of cache misses is in-
stead much higher, and hence influences execution times
at a larger extent.
Along this line, with 32k flows the difference between

the execution time with QFQ+, QFQ or DRR and the
execution time with FIFO is no more a reliable measure
of the net execution time of any of the three schedulers.
In fact, cache misses may affect the execution time of the
packet generation and discard tasks too, and the number
of cache misses with FIFO differs from that with the other
schedulers.
Execution time and cache misses - Bursty ar-

rivals. Our results with a bursty arrival pattern are shown
in figures 6 and 7. With 1k-w1 and 1k-wmix, the relative
execution times of the schedulers are about the same as in
Figure 4, because cache misses are really few.
The effects of a different arrival pattern come into play

with 32k flows. First, the total execution time of all the
schedulers is higher than in Figure 4, because bursty ar-
rivals conflict, differently from smooth arrivals, with the
smooth service order provided by QFQ+, DRR and QFQ
to low-weight flows (which are the major part in every
flow set). Besides, the execution time of QFQ+ is not
lower than that of DRR with 32k-mix any more, because
the bursty service of DRR for high-weight flows is now
closer to the order in which packets are generated for those
flows. Finally, we can note that the total execution time of
FIFO decreases with respect to smooth arrivals, because
with bursty arrivals FIFO causes a lower number of cache
misses.
Energy consumption. QFQ+ causes less cache misses

than DRR and QFQ in both scenarios with 32k flows, i.e.,
where the number of cache misses is not negligible (fig-
ures 5 and 7). According to the models in [20, 21], this fact
should guarantee that the relative performance of QFQ+
with respect to DRR and QFQ, in terms of energy con-
sumption, is about the same as, or is even better than, the
relative performance of QFQ+ in terms of execution time
(figures 4 and 6). We have verified that this property does
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hold on our system using a power meter.

8.3. Service-guarantee comparison

To make it harder for the schedulers to preserve low
packet delays and service lags, in our experiments about
service guarantees we have also let the controller randomly
switch to the enqueue phase, with probability 0.5, every
time a flow queue got empty. Besides, in the simulated
environment, the size of the transmit queue is equal to
just one packet, i.e., Qpkts = 2 (Section 3.1). This is
the configuration where, according to (2), (4) and, e.g.,
Table 2, the degradation of the guarantees of QFQ+ with
respect to QFQ is more evident. For coherence with the
experiments about efficiency, we have also set M = 8 for
QFQ+, even if M would have been equal to 2 in the Linux
implementation of QFQ+ (Section 3.1).

Figure 8 shows the T-WFIs recorded over all the runs,
for only the flows with maximum weight, i.e., with mini-
mum packet service time (Definition 1). For each flow set,
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the T-WFIs are measured in multiples of the packet ser-
vice time for the maximum-weight flows. As highlighted
in Section 6, these are the flows for which the accuracy of
the service guarantees matters most. In this respect, in
our experiments we have considered also a more skewed
scenario, namely 1k-highw, but, for scale issues, the figure
does not show T-WFIs for this scenario. We report them
apart below.
According to Figure 8, the T-WFIs guaranteed by

QFQ+ and QFQ are close to each other, and are closer to
packet service times than the worst-case bounds in Table 2.
In particular, they are so low to make most time-sensitive
applications feasible (we remind that T-WFIs are a mea-
sure of delay variations as well). It is worth noting that
the T-WFI of DRR is instead 0 in the perfectly symmetric
scenarios, whereas it is much higher than those of QFQ+
and QFQ in the other scenarios. In particular, it grows as
the ratio between the maximum and the minimum packet
service time grows (which happens when moving from 32k-
wmix to 1k-wmix ).
This property is confirmed by our results with the much

more skewed flow set 1k-highw, where the T-WFIs of
QFQ+, DRR and QFQ, measured in packet service times
for the highest-weight flow, are: 2.744, 249.0 and 1.244.
The T-WFI of DRR becomes absolutely unbearable, while
QFQ and QFQ+ preserve an accurate service.

9. Conclusions

In this paper we have presented a modification scheme
for reducing the execution time of the family of the most
accurate packet fair-queueing schedulers, and have showed
how the service guarantees of the modified schedulers may
change with respect to those of the original ones. Apply-
ing this scheme to QFQ, we have defined QFQ+, a new
scheduler that is definitely more efficient than QFQ, and
that has replaced the latter in mainline Linux.

Appendices

A. Proofs of the B-WFI and T-WFI of SCHED

In this appendix we prove the B-WFI and the T-WFI
of SCHED in case SCHED is either WF2Q or WF2Q+,
or else any approximate variant of any of the previous
two schedulers. In this respect, the worst-case guaran-
tees provided WF2Q+ or by one of approximate variants
of WF2Q+ considered in this paper [6, 7, 5] are, respec-
tively, equal to those provided by WF2Q or by the same
approximate variant, if applied to WF2Q. For this reason,
in this appendix we outline only the WF2Q+ algorithm.
Besides, for brevity, hereafter we use the generic name
AFQ (Approximated Fair Queueing), to refer to any of
these variants and to WF2Q+ itself.
For ease of notation, only in this appendix, we move flow

indexes from subscripts to superscripts. We use instead
subscripts for packet indexes. For convenience, all symbols
used in this appendix are listed in Table A.3.

Symbol Meaning

∗
i A superscript indicates a quantity related to a

flow

∗m A subscript indicates a quantity related to a
packet

N Total number of flows

∆W capacity of the FIFO in bits

h, i Flow index

L,Li Max length of any packet in the system/flow

φi Weight of flow i

li Length of the head packet in flow i; li = 0 when
the flow is idle

∗(t1, t2) Given a generic function ∗(t), the notation
∗(t1, t2) ≡ ∗(t2)− ∗(t1) indicates the difference
between the values in t2 and t1

W (t),
W i(t)

The “work function”, i.e. number of bits trans-
mitted (globally, or for flow i) in [0, t]

V (t), V i(t) System/flow virtual time, see Eq. (A.3)

Si, F i,
Sm, Fm

Exact virtual start and finish times of flow i or
packet m, see Eq. (A.2)

Ŝi, F̂ i,
Ŝm, F̂m

Approximated flow/packet timestamps, see
Section A.3

W (t),

W
i
(t)

The “work function” describing the input to the
FIFO

V (t), V
i
(t) System/flow virtual time corresponding to

W (t)

S
i
, F

i
Counterparts of Si and F i obtained using V (t)
instead of V (t) in (A.2)

S̃i, F̃ i Counterparts of Ŝi and F̂ i obtained using V (t)
instead of V (t) in Eq. (A.2)

B(t) The set of backlogged flows at time t

Qi(t) Backlog of flow i at time t

Table A.3: Definitions of the symbols used in this appendix.

Besides, we often use the notation

f(t1, t2) ≡ f(t2)− f(t1)
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where f(t) is a function of the time. We assume that
any discontinuous function of the time is left-continuous,
i.e., if t0 is a discontinuity point for a function f(t), then
f(t0) = limǫ→0 f(t0 + |ǫ|), and f(t−0 ) = limǫ→0 f(t0 − |ǫ|).

A.1. System model

Consider a system as in Figure A.9 A, in which N packet
flows (defined in whatever meaningful way) share a com-
mon transmission link serving one packet at a time. The
link has a time-varying rate, with W (t) being its “work
function”, or the total number of bits transmitted in [0, t].
A system is called work conserving if the link is used at
full capacity whenever there are packets queued. A sched-
uler (the AFQ block in the figure) sits between the flows
and the link: arriving packets are immediately enqueued,
and the next packet to serve is chosen and dequeued by
the scheduler when the link is ready.
In our model, each flow i is assigned a fixed weight

φi > 0. Without losing generality, we assume that φ =
∑N

i=1 φ
i ≤ 1.

A flow is defined backlogged/idle if it owns/does not own
packets not yet completely transmitted. We call B(t) the
set of flows backlogged at time t. Each flow uses a FIFO
queue to hold the flow’s own backlog.
We call head packet of a flow the packet at the head of

the queue, and li its length; li = 0 when a flow is idle. We
say that a flow is receiving service if one of its packets is
being transmitted. Both the amount of service W i(t1, t2)
received by a flow and the total amount of serviceW (t1, t2)
delivered by the system in the time interval [t1, t2] are mea-
sured in number of bits transmitted during the interval.
The analysis of the schedulers considered in this paper

uses the concept of corresponding systems [9, Definition
1]: two systems are corresponding if they have the same
work function W (t), serve the same set of flows with the
same weights in both systems, and are subject to the same
arrival pattern.

A.2. WF2Q+

In this section we outline the WF2Q+ algorithm for the
case of a variable-rate link (see [10, 22] for a complete
description). WF2Q+ is a packet scheduler that approx-
imates, on a packet-by-packet basis, the service provided
by a corresponding work-conserving ideal fluid system that
delivers the following, almost perfect bandwidth distribu-
tion over any time interval during which a flow is contin-
uously backlogged:

W i(t1, t2) ≥ φiW (t1, t2)− (1 − φi)L (A.1)

The fluid and the packet system differ in that the former
may serve multiple packets in parallel, whereas the latter
has to serve one packet at a time, and is non preemptive.
To define the scheduling policy of WF2Q+, we need to in-
troduce the concept of eligibility, first defined in [9, Section
3]: a packet is defined as eligible at a given time instant
if it has already started in the fluid system by that time.

Accordingly, we define a flow as eligible if its head packet
is eligible.
WF2Q+ operates as follows. Each time the link is ready,

the scheduler starts to serve, among the eligible packets,
the next one that would be completed in the fluid system;
ties are arbitrarily broken. WF2Q+ is a work-conserving
on-line algorithm, hence it succeeds in finishing packets in
the same order as the ideal fluid system, except when the
next packet to serve arrives after one or more out-of-order
packets have already started.

A.2.1. Virtual Times

The WF2Q+ policy is efficiently implemented by con-
sidering, for each flow, a special flow virtual time function
V i(t) that grows as the normalized amount of service re-
ceived by the flow (i.e., actual service received, divided
by the flow’s weight). Besides, when the flow turns from
idle to backlogged, V i(t) is set to the maximum between
its current value and the value of a further function, the
system virtual time V (t), defined below.
In addition to V i(t), each flow is conceptually10 associ-

ated with a virtual time V i
fluid(t) also in the fluid system.

V i(t) and V i
fluid(t) are computed with the same rules, but

their values differ as the instantaneous distribution of work
is different in the packet and in the corresponding fluid
system.
For every packet of flow i, we define the virtual start and

finish time of the packet as the value of V i(t) when the
packet starts and finishes to be served in the fluid system.
We then define the virtual start and finish time of flow
i, Si(t) and F i(t), as the virtual start and finish times of
its head packet at time t. These timestamps need to be
updated only when the flow becomes backlogged, or when
its head packet is dequeued. On these events Si(t) and
F i(t) are updated as follows:

Si(tp)←







max(V (tp), F
i(t−p )) on newly

backlogged flow;
F i(t−p ) on packet dequeue;

F i(tp)← Si(tp) + li/φi

(A.2)
where tp is the time when a packet enqueue/dequeue oc-
curs, and li is the packet size. V (t) is the system virtual
time function defined as follows (assuming

∑

φi ≤ 1):

V (t2) ≡ max

{

V (t1) +W (t1, t2), min
i∈B(t2)

Si(t2)

}

(A.3)

Note how the instantaneous link rate needs not be known
to update V (t): just W (t1, t2) (the amount of data trans-
ferred in [t1, t2]) suffices. At system start up, V (0) = 0,
Si(0) ← 0 and F i(0) ← 0. The scheduling policy of
WF2Q+ is implemented using only V (t), and the virtual
start and finish times of the flows, as detailed in the next
paragraph.

10This parameter is not needed in the implementation but we use
it to prove Lemma 4.
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Figure A.9: A: the system model used in the literature, ignoring the
presence of the FIFO and assuming W (t) is known exactly within
the scheduler. B: a real system, made of an AFQ scheduler feeding a
dequeue unit with work function W (t), followed by a FIFO and the
output link. C: the corresponding fluid system for the first part of
B), serving multiple packets at a time, with the same work function
W (t).

A.2.2. Scheduling decisions

In terms of virtual times, flow i is eligible at time t if
V (t) ≥ Si(t). In addition, the fluid system serves flows so
as to complete packets in virtual finish time order [10, 22].
WF2Q+ can then be implemented as follows: each time
the next packet to transmit is requested, the scheduler
(dequeues and) returns the head packet of the eligible flow
with the smallest virtual finish time. The second argu-
ment of the max operator in Eq. (A.3) guarantees that
the system is work-conserving.

A.3. Approximate variants of WF2Q+

The exact WF2Q+ algorithm as described above, has
Ω(logN) complexity in the number of flows [23]. In or-
der to implement the same policy in O(1) time, the ap-
proximate variants in the AFQ family [6, 7, 5] label flows
with approximated virtual start and finish times Ŝi(t) and
F̂ i(t), in addition to the exact values defined in (A.2).
The approximated values help reducing the complexity
of certain sorting stages in the algorithm, making them
constant-time operations.
The way approximations are computed varies, but in all

cases we can write:

Si(t)−∆Si− ≤ Ŝi(t) ≤ Si(t) ≤

F i(t) ≤ F̂ i(t) ≤ Si(t) + ∆Si+
(A.4)

where ∆Si− and ∆Si+ are non-negative quantities

(∆Si− = 0 and ∆Si+ = Li

φi in WF2Q+).
AFQ uses the approximated timestamps to compute the

virtual time, i.e., it uses Ŝi(t2) instead of Si(t2) in (A.3),
and to choose the next packet to transmit (Sec A.2.2),
while it uses the exact timestamps to charge flows for the
work received (Eq. (A.2)).

time

W(t)

W(t)

dW

Work

Figure A.10: W (t), the number of bits extracted from the scheduler,
is within a band of height ∆W (the size of the FIFO) above W (t),
the number of bits transmitted by the link.

A.4. Introducing an output queue

The service guarantees of packet schedulers are generally
computed on the model in Figure A.9 A, which assumes
that i) the exact value of W (t) is known when updating
V (t), and ii) the link requests a new packet to transmit
only once the previous one has been fully transmitted. Un-
fortunately, these two assumptions are almost never true
in a real system.
First, network interfaces (commonly called NICs) oper-

ate on a packet-by-packet basis, and do not export a real-
time indication of the number of bits transmitted. The
data rate is not constant due to framing, link contention
and link level flow control; even the notification of trans-
mission completions, available through memory mapped
registers or interrupts, can be delayed by several microsec-
onds, corresponding to tens/hundreds of packets on high
speed links. Secondly, to make sure that the link does not
remain idle while the scheduler (firmware or software) pro-
vides the next packet to send, NICs typically implement a
ring buffer, where the operating system can push outgoing
transmissions, and an internal FIFO that drains the ring
buffer and drives the link.
A realistic model of a communication device is thus the

one in Figure A.9 B, where the scheduler is drained by a de-
queue unit that takes care of inserting packets in the FIFO
queue11. We denote as W (t) the sum of the sizes of the
packets dequeued from AFQ during [0, t]. In other words,
W (t) is the amount of work delivered to the FIFO up to
time t. The FIFO is often filled and drained in bursts, as
traffic arrive or low/high water marks are reached, so the
work function W (t) has a stepwise shape (Figure A.10),
and lies in a band of height ∆W on top of W (t), where
∆W equals the maximum capacity of the FIFO.

∆W = max
t

W (t)−W (t) ≥ 0. (A.5)

The presence of the FIFO and the different work func-
tions used to drain the scheduler may change the order in
which packets are queued between the ideal (Figure A.9 A)
and the actual (Figure A.9 B) systems.

11For brevity we will use the term FIFO to indicate all the buffering
that is present between the scheduler and the link.
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Our goal is to evaluate the service properties of systems
modeled as in Figure A.9 B, hence taking into account the
impact of FIFOs and the uncertainty on the work function
W (t). We achieve this goal in two steps:

1. We first prove a few preliminary lemmas (Section A.7)
used in the proofs of the main theorems;

2. We then prove the main results (Section A.10),
namely the B-WFI and T-WFI for a generic AFQ
scheduler in presence of a FIFO and approximated
work function.

A.5. Proof machinery

We compute both the B-WFI and the T-WFI of
AFQ schedulers by lower-bounding the amount of service
W i(t1, t2) given by the system in Figure A.9 B to a flow
during any time interval in which the flow is continuously
backlogged in the scheduler12. To lower-bound W i(t1, t2)
we model our system as the cascade shown in Figure A.9 B.
The scheduler uses W (t) as the work function, and Equa-
tions A.2 and A.3 to compute the virtual time V (t) and

the timestamps S
i
(t) and F

i
(t). We call S̃i(t) and F̃ i(t)

the approximate versions of the flows’ timestamps. The
virtual time V (t) then becomes

V (t2) ≡ max

{

V (t1) +W (t1, t2), min
i∈B(t2)

S̃i(t2)

}

(A.6)

and the relation between timestamps is

S
i
(t)−∆Si− ≤ S̃i(t) ≤ S

i
(t) ≤

F
i
(t) ≤ F̃ i(t) ≤ S

i
(t) + ∆Si+

(A.7)

For some derivations, we compare the behaviour of the
(packet) AFQ scheduler on the left of Figure A.9 B, with
its corresponding fluid system shown in Figure A.9 C.
While it may seem counterintuitive, we reduce the lower

bound to W i(t1, t2) to one on W
i
(t1, t2), and then in

Section A.9 we compute two slightly different bounds to

W
i
(t1, t2). From the first bound we immediately get the

T-WFI. Using the second bound we compute instead the
B-WFI and the T-WFI by a few simple steps.

A.6. Problem reduction

The bound on W i(t1, t2) can be derived by one on

W
i
(t1, t̂), for a suitable interval [t1, t̂]. To this purpose,

let I = [t̂, t2] be the interval such that all packets that are
in the FIFO or under service13 at time t2 have been de-
queued during I. By definition, the sum of the sizes of all

12The quantity of interest is W i(t1, t2), i.e. packets actually exit-

ing the link, and not W
i
(t1, t2), which only refers to packets entering

the FIFO.
13We will often refer to these packets in the next sections. These

packets have been fully served as far as AFQ is concerned, but have
not yet emerged from the link, so from the user’s perspective they
are not served yet.

these packets is W
i
(t̂, t2), and we have

0 ≤W
i
(t2)−W i(t2) ≤W

i
(t̂, t2) (A.8)

Using these two inequalities, we can then write:

W i(t1, t2) = W i(t2)−W i(t1) ≥

max{0,W i(t2)−W
i
(t1)} ≥

max{0,W
i
(t2)−W

i
(t̂, t2)−W

i
(t1)} =

max{0,W
i
(t2)−W

i
(t2) +W

i
(t̂)−W

i
(t1)} =

max{0,W
i
(t̂)−W

i
(t1)} = W

i
(t1,max{t1, t̂})

(A.9)

Intuitively, this equation relates the output service in
[t1, t2] with the service given to the scheduler during a
shorter interval which excludes packets still staged in the
FIFO or in the link.
In Section A.9, Lemma 7 we compute an upper bound to

W
i
(t1, t2) for any time interval [t1, t2] during which flow

i is continuously backlogged. In case t̂ > t1, from this

bound we get immediately an upper bound to W
i
(t1, t̂) by

just replacing t2 with t̂ (in fact, also [t1, t̂] is a time interval
during which flow i is continuously backlogged).

A.7. Supporting lemmas

The following lemmas are intermediate results needed
to prove our service-guarantee bounds. We present them
in bottom-up order.
Notation: For the reader’s convenience, on top of various
equality or inequality signs we write the reason (typically
a reference to one equation) why the relation holds.
We start by comparing the completion time of packet

transmissions in the packet and the fluid systems. Let pm
be the m−th packet served in the packet system (the two
systems do not necessarily complete packets in the same
order) and call tpm and tfm their completion times in the
two systems.

Lemma 3. If F
i

m = F̃ i
m then tpm ≤ tfm+∆TL, where ∆TL

is such that W (tfm, tfm + ∆TL) = L (if the exact and the
approximated virtual finish time of packet pm are equal,
then pm will complete in the packet system no later than
in the fluid one, plus a worst-case delay equal to ∆TL).

Intuition for the proof: the packet system serves packets
in strict finish time order, except when packets are not
eligible or not arrived. For all in-order bursts immediately
after an out-of-order packet, the fluid system cannot have
started serving any of the packets in the burst before the
beginning of the burst in the packet system, so it must
finish the burst no earlier than the packet system.

Proof. Let o be the smallest index for which all packets
have an approximated finish time no greater than pm, F̃i ≤
Fm∀i ∈ [o..m]. Since F i ≤ F̃i, and the fluid system (using
exact timestamps) completes packets in finish time order,
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all packets po..pm must also be completed not earlier than
tfm in the fluid system.
If o = 1 then from the origin of time the packet sys-

tem has served only packets p1..pm, while the fluid system
might have already started service for some subsequent
packet. Remembering that both systems have the same
work function, the fluid system cannot be ahead of the
packet system, hence tpm ≤ tfm.
If o > 1, then packet po−1 has a higher finish time than

po . . . pm, none of which has started in the packet system
before tpo−1. This means that at tpo−1 either they had ar-

rived yet, or they were not eligible (S̃i(tPo−1) > V (tPo−1)),
so even the fluid system cannot have started serving any of
those packets before tpo−1 (the fluid system starts to serve

a flow at time t only if S
i
(t) ≤ V (t) and S

i
(t) ≥ S̃i(t)

holds). However, some of the packets po . . . pm may be-
come eligible while the fluid system works at time tpo−1,
and hence also these packets may receive some service in
the fluid system at time tPo−1. Besides, the work function
of the fluid system increases by at most L at time tpo−1. As
a consequence, between tpo and tpm the fluid system must
have done at least the same amount of work as the packet
system, minus at most L. Hence tfm cannot precede tpm by
more than ∆TL.

A.8. Globally Bounded Timestamps

The flow timestamps cannot deviate too much from the
system’s virtual time V (t). This is the “Globally Bounded
Timestamp” property (GBT) defined in [7, Definition 3].
Here we compute a variant of this property that comes in

handy to upper-bound W
i
(t1, t2).

Lemma 4 (Lower bound for F̃ i(t)). For all times t at
which flow i is backlogged,

V (t)− F̃ i(t) ≤ L (A.10)

Proof. Let t be a generic time instant at which flow i is

backlogged, with pm at its head. We know that F
i
(t) ≤

F̃ i(t). If F
i
(t) = F̃ i(t), Lemma 3 tells us that the trans-

mission completion times in the packet and fluid systems

are tPm ≤ tFm+∆TL. Besides, denoted as V
i

fluid(t) the vir-
tual time of flow i in the fluid system, the latter guarantees

that V (t) ≤ V
i

fluid(t) holds at all times. Thus

V (t) ≤ V
i

fluid(t)
t≤tPm
≤ V

i

fluid(t
P
m)

tPm≤tFm+∆TL

≤

V
i
(tPm) + L

(A.2)
= F̃ i(t) + L

(A.11)

The case F
i
(t) < F̃ i(t) can be handled by consider-

ing what happens if packet pm is artificially extended so

F
i
(t) = F̃ i(t). The larger packet would still satisfy (A.11).

Besides, whether or not the original packet pm is replaced
with a larger one, the values of V (t) and F i(t) are the
same, because 1) the value of tpm does not depend on the

size of pm, 2) t < tpm, and 3) the size of pm does not influ-
ence either any timestamp or the packet service order up
to time tpm. Hence the thesis holds also in this case.

Lemma 5 (Upper bound for S
i
(t)). At all times t

S
i
(t) ≤ V (t) + ∆Si− +

Li

φi
− Li (A.12)

Note: differently from the previous bound, this bound ap-
plies to the exact timestamp, as this is what we need in
the proof of subsequent Lemma 6.

Proof. Given any time instant t, we consider the smallest

time instant tp such that S
i
(tp) = S

i
(t), and we denote as

pm the packet served at time tp, and lm its size. According

to (A.2), either S
i
(tp) = V (tp) ≤ V (t) or S

i
(tp) = F

i
(t−p )).

In the first case the thesis holds trivially. For the other
case to hold, at least one packet of flow i must have been
already served before time tp. Let t′p be the largest time
instant, with t′p < tp, at which a packet of flow i is served.

Flow i has to be eligible at time t′p, i.e., S̃
i(t−p ) = S̃i(t′p) ≤

V (t′p) ≤ V (t−p ) has to hold. Besides, we can note that the
virtual time advances by at least the size of pm at time tp,
thus V (t−p ) ≤ V (tp)− Lm ≤ V (t)− Lm holds. In the end,

S̃i(t−p ) ≤ V (t)− Lm. Using this inequality, we can write

S
i
(tp) = F

i
(t−p )

(A.2)
= S

i
(t−p ) +

Lm

φi

(A.4)

≤

S̃i(t−p ) + ∆Si− +
Lm

φi
≤

V (t)− Lm +∆Si− +
Lm

φi

φi≤1

≤

V (t)− Li +∆Si− +
Li

φi

(A.13)

A.9. Lower bounds for W
i
(t1, t2)

The second lemma in this section contains a lower
bound14 to W

i
(t1, t2), expressed in terms of the the work

function W (t). We substitute this bound in (A.9) to com-
pute the B-WFI of AFQ schedulers.

Lemma 6.

W
i
(t1, t2) ≥

φiV (t1, t2)+

−φi

(

Li

φi
+∆Si− +∆Si+ + L− Li

)

(A.14)

14Remembering that by definition W
i
(t1, t2) ≥ 0, we could derive

tighter bounds by writing W
i
(t1, t2) ≥ max {0, ...}. However this

would make the result even less readable, and it is hardly useful
given that the equation is later used in a context where we take the
maximum over any flow and/or time intervals.
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Proof. Recalling the meaning of the virtual time V
i
(t) of

flow i, we can write the following equalities, where the last
equality follows from summing and subtracting V (t2) −

V (t1) to V i(t2)− V
i
(t1):

W
i
(t1, t2) =

φiV
i
(t1, t2) =

φi
[

V
i
(t2)− V

i
(t1)

]

=

φi
[

(V (t2)− V (t1)
]

+

φi
[

V
i
(t2)− V (t2)− (V

i
(t1)− V (t1))

]

(A.15)

We can therefore prove the thesis by computing lower

bounds to the two terms V
i
(t2) − V (t2) and −(V

i
(t1) −

V (t1)). Remembering that by definition V
i
(t) = S

i
(t), for

the first term we have

V
i
(t2)− V (t2) = S

i
(t2)− V (t2)

(A.7)

≥

F̃ i(t2)−∆Si+ − V (t2)
(A.10)

≥

−∆Si+ −
Li

φi
− L

(A.16)

As for the second term, we have

−
[

V
i
(t1)− V (t1)

]

=

−
[

S
i
(t1)− V (t1)

] (A.12)

≥

−

[

V (t1) + ∆Si− +
Li

φi
− LiV (t1)

]

=

−

[

∆Si− +
Li

φi
− Li

]

(A.17)

Replacing the two bounds in (A.15), and rearranging
terms, we get the thesis.

Lemma 7.

W
i
(t1, t2) ≥ φi

(

W (t2)−W (t1)
)

+

−φi

(

Li

φi
+∆Si− +∆Si+ +∆W + L− Li

) (A.18)

Proof. We prove the thesis by upper-bounding the term
V (t1, t2) in (A.14) as follows:

V (t2)− V (t1) ≥W (t2)−W (t1)
(A.5)

≥
W (t2)−W (t1)−∆W.

(A.19)

A.10. Service properties

We are now ready to compute the B-WFI and the T-
WFI of the AFQ family of schedulers.

A.10.1. B-WFI

The B-WFIi for a flow i is defined as:15

B-WFIi ≡ max
[t1,t2]

{

φiW (t1, t2)−W i(t1, t2)
}

(A.20)

where [t1, t2] is any time interval during which the flow
is continuously backlogged, φiW (t1, t2) is the minimum
amount of service the flow should have received according
to its share of the link bandwidth, and W i(t1, t2) is the
actual amount of service provided by the scheduler to the
flow.

Theorem 4 (B-WFI). For a flow i, AFQ guarantees

B-WFIi ≤ φi∆W + φi
(

∆Si+ +∆Si−
)

+

+ (1− φi)Li + L
(A.21)

Proof. By substituting (A.9) in (A.20), we get

B-WFIi
(A.9)

≤

φiW (t1, t2)−W
i
(t1,max{t1, t̂})

(A.18)

≤

φiW (t1, t2)− φi
(

W (max{t1, t̂})−W (t1)
)

+

+φi

(

Li

φi
+∆Si− +∆Si+ +∆W + L− Li

)

≤

φiW (t1, t2)− φi (W (t2)−W (t1)) +

+φi

(

Li

φi
+∆Si− +∆Si+ +∆W + L− Li

)

(A.22)

A.10.2. T-WFI

For a link with a constant rate R, the T-WFIi for flow
i is defined as

T-WFIi ≡ max

(

tc − ta −
Qi(ta)

φiR

)

(A.23)

where ta and tc are, respectively, the arrival and comple-
tion time of a packet, and Qi(ta) is the backlog of flow i
just after the arrival of the packet.

Theorem 5 (T-WFI). For a flow i, AFQ guarantees

T-WFIi ≤
Li

φiR
+

∆Si− +∆Si+ +∆W + L− Li

R
(A.24)

Proof. Given a packet p arriving at time ta, we prove the
thesis in two steps: first we compute an upper bound to
the time that elapses from ta to when p is dequeued from
AFQ, say time tc, then we add to this upper bound the
maximum time that may elapse from time tc to the time
instant tc at which p is finally transmitted.

15This definition is slightly more general than the original one
in [10], where t2 was constrained to the completion time of a packet.
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As for the first step, by definition of W
i
(t) and tc, we

have that W
i
(ta, tc) = Qi(ta). Using this equality and

(A.18), and recalling that the link works at constant speed
R, we can write

tc − ta ≤
W (ta, tc)

R
=

W (ta, tc) +W (tc)−W (tc)

R
=

W (tc)−W (ta) +W (tc)−W (tc)

R

(A.18)

≤

W (tc)−W (tc)

R
+

W
i
(ta, tc)

φiR
+

Li

φi − Li +∆Si− +∆Si+ +∆W + L

R
=

W (tc)−W (tc)

R
+

Qi(ta)

φiR
+

+

Li

φi − Li +∆Si− +∆Si+ +∆W + L

R

(A.25)

The thesis follows from considering that, since the FIFO
is emptied and the packet on the link is served at a con-

stant rate R, then tc − tc =
W (tc)−W (tc)

R
.

B. Proof of Theorem 2

Using the same conventions as in (9), we define the per-
aggregate B-WFI of SCHED+ as follows:

ˆB-WFI
k

SCHED+ ≡

max
[t1,t2]

{

min
[

mkφkW (t1, t2), B̂
k(t1, t2)

]

−W k(t1, t2)
}

(B.1)

where [t1, t2] is any time interval during which the k-th
aggregate is continuously backlogged, and B̂k(t1, t2) is the
sum of the sizes of the super packets of the k-th aggregate
that either are pending at time t1, or arrive in the open
interval (t1, t2).
We can now enunciate the counterpart of Lemma 1 in

terms of B-WFI.

Lemma 8. If the simplifying assumption reported in Sec-
tion 5.1 holds, then we have

ˆB-WFI
k

SCHED+ ≤

mkφkQ+mkφk∆Sk + (1−mkφk)mkLk +ML.
(B.2)

Proof. Identical to that of Lemma 1.

Then we can generalize the previous inequality so as to
hold also in case the simplifying assumption does not hold.

Lemma 9. Regardless of whether the simplifying as-

sumption in Section 5.1 holds, ˆB-WFI
k

SCHED+ is upper-
bounded by the right-hand side of (B.2) plus mkLk.

Proof. If the simplifying assumption always holds for the
k-th aggregate, then the lemma trivially holds. Suppose
instead that the simplifying assumption may not hold. Ac-
cording to (B.1) and (B.2), the lemma still holds if and
only if the following upper bound holds for every time
interval [t1, t2] during which the k-th aggregate is contin-
uously backlogged:

min
[

mkφkW (t1, t2), B̂
k(t1, t2)

]

−W k(t1, t2) ≤

mkφkQ +mkφk∆Sk + (2−mkφk)mkLk +ML.

(B.3)

The term mkφkQ comes from the corresponding term
φkQ in (6). It follows that, according to how the term
φkQ in (6) is derived in Appendix A, the term mkφkQ dis-
appears from (B.3) if we replace W (t1, t2) and W k(t1, t2)

with the sum of the sizes W (t1, t2) and W
k
(t1, t2) of, re-

spectively, all the packets dequeued during [t1, t2] and the
packets of the k-th aggregate dequeued during [t1, t2] (in-
tuitively, we remove the effects of the transmit queue). In
the end, (B.3) holds if and only if the following bound
holds:

min
[

mkφkW (t1, t2), B̂
k(t1, t2)

]

−W
k
(t1, t2) ≤

mkφk∆Sk + (2−mkφk)mkLk +ML.
(B.4)

For the simplifying assumption to not hold, there must
exist at least one super packet p̂ such that the aggregate
finishes its backlog but not its budget when the last packet
in the super packet is dequeued. For this violation of the
simplifying assumption to influence the service of the k-
th aggregate during [t1, t2], the following inequalities must
hold: t̂a ≤ t2 and t̂′c ≥ t1, where t̂a and t̂′c are the arrival
time of p̂ and the dequeueing time of the last packet in p̂
(we use the more cumbersome notation t̂′c, instead of just
t̂c, because we use the latter symbol for the completion
time of super packets).
We consider two alternatives: 1) t̂′c ∈ [t1, t2], 2) t̂′c /∈

[t1, t2]. In the first case, since the aggregate finishes its
backlog at time t̂′c, the time interval [t1, t2] itself necessarily
ends exactly at time t̂′c. This implies that W k(t1, t2) =
B̂k(t1, t2), and hence that (B.4) trivially holds.
In the second case, suppose first that the following as-

sumption holds: as of time t2, at least another super packet
needs to be dequeued before dequeueing the first packet in
p̂. It follows that the service provided by SCHED+ to
the k-th aggregate during [t1, t2] is exactly the same, re-
gardless of whether p̂ even arrived. Hence (B.4) holds by
Lemma 1.
If, instead, the assumption does not hold, then p̂ is the

only super packet of the k-th aggregate that has to be
completely dequeued as of time t2 (because the backlog
of the aggregate will finish when the last packet in p̂ is
dequeued). Since the size of p̂ is at most mkLk, it follows
that W k(t1, t2) ≥ B̂k(t1, t2) − mkLk, which, substituted
in (B.4), proves the thesis.
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We can finally prove Theorem 2.

Proof. Thanks to Lemma 9, (B.4) holds for any time inter-
val [t1, t2] during which the i-th flow, belonging to the k-th
aggregate, is continuously backlogged. Dividing both sides
of (B.4) by mk, replacing (16) in the resulting inequality,
and rearranging terms, we get

φk min
[

W (t1, t2), Bi(t1, t2)
]

−W i(t1, t2) ≤

φk∆Sk +

(

5−
1

mk
−mkφk

)

Lk +
M

mk
L

(B.5)

Finally, turning back to the actual number of bits trans-
mitted and considering again the effect of the transmit
queue as shown in Appendix A, we have

φk min [W (t1, t2), Bi(t1, t2)]−Wi(t1, t2) ≤

φkQ+ φk∆Sk +

(

5−
1

mk
−mkφk

)

Lk +
M

mk
L

(B.6)
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